

Martin Glinz

Hans van Loenhoud

Stefan Staal

Stan Bühne

Handbook for the
CPRE Foundation Level
according to the IREB Standard
Education and Training for

Certified Professional for Requirements Engineering (CPRE)

Foundation Level

Version 1.0.0

November 2020

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 2/139

Terms of Use

All contents of this document, especially texts, photographs, graphics, diagrams,
tables, definitions and templates, are protected by copyright. Copyright © 2020 for
this handbook is with the authors. All (co-)authors of this document have transferred
the exclusive right of use to IREB e.V.

Any use of the handbook or its components, in particular copying, distribution
(publication), translation, or reproduction, requires the prior consent of IREB e.V.

Any individual is entitled to use the contents of the handbook within the scope of the
acts of use permitted by copyright law, in particular to quote these correctly in
accordance with recognized academic rules.

Educational institutions are entitled to use the contents of the handbook for teaching
purposes under correct reference to the work.

Use for advertising purposes is only permitted with the prior consent of IREB e.V.

Acknowledgements

The content of this handbook was reviewed by Rainer Grau, Karol Frühauf, and
Camille Salinesi. Tracey Duffy performed an English review. Stan Bühne and Stefan
Sturm did the final editing.

Approved for release on November 11, 2020 by the IREB Council upon recommenda-
tion of Xavier Franch and Frank Houdek.

We thank everybody for their involvement.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 3/139

Table of Contents

Table of Contents ... 3

Foreword .. 6

Version History .. 7

1. Introduction and Overview .. 8

1.1 Requirements Engineering: What ... 8

1.2 Requirements Engineering: Why ... 9

1.3 Requirements Engineering: Where .. 10

1.4 Requirements Engineering: How .. 11

1.5 The Role and Tasks of a Requirements Engineer ... 11

1.6 What to Learn about Requirements Engineering .. 11

1.7 Further Reading ... 12

2. Fundamental Principles of Requirements Engineering 13

2.1 Overview of Principles .. 13

2.2 The Principles Explained .. 13

2.3 Further Reading ... 23

3. Work Products and Documentation Practices .. 25

3.1 Work Products in Requirements Engineering ... 25

3.1.1 Characteristics of Work Products ... 25

3.1.2 Abstraction Levels ... 27

3.1.3 Level of Detail .. 28

3.1.4 Aspects to be Considered ... 28

3.1.5 General Documentation Guidelines ... 31

3.1.6 Work Product Planning ... 31

3.2 Natural-Language-Based Work Products .. 32

3.3 Template-Based Work Products ... 34

3.3.1 Phrase Templates .. 34

3.3.2 Form Templates ... 36

3.3.3 Document Templates ... 37

3.3.4 Advantages and Disadvantages ... 37

3.4 Model-Based Work Products .. 38

3.4.1 The Role of Models in Requirements Engineering .. 39

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 4/139

3.4.2 Modeling System Context ... 45

3.4.3 Modeling Structure and Data .. 48

3.4.4 Modeling Function and Flow .. 51

3.4.5 Modeling State and Behavior .. 53

3.4.6 Modeling Goals ... 57

3.5 Glossaries .. 58

3.6 Requirements Documentation Structures .. 59

3.7 Prototypes in Requirements Engineering ... 60

3.8 Quality Criteria for Work Products and Requirements 61

3.9 Further Reading ... 62

4. Practices for Requirements Elaboration .. 63

4.1 Sources for Requirements .. 64

4.1.1 Stakeholders .. 66

4.1.2 Documents .. 70

4.1.3 Other Systems ... 71

4.2 Elicitation of Requirements ... 72

4.2.1 The Kano Model.. 74

4.2.2 Gathering Techniques .. 77

4.2.3 Design and Idea-Generating Techniques ... 80

4.3 Resolving Conflicts regarding Requirements .. 84

4.3.1 How Do You Resolve a Requirements Conflict? .. 85

4.3.2 Conflict Types .. 87

4.3.3 Conflict Resolution Techniques ... 89

4.4 Validation of Requirements ... 92

4.4.1 Important Aspects for Validation .. 93

4.4.2 Validation Techniques ... 95

4.5 Further Reading ... 99

5. Process and Working Structure .. 100

5.1 Influencing Factors .. 100

5.2 Requirements Engineering Process Facets .. 102

5.2.1 Time Facet: Linear versus Iterative .. 103

5.2.2 Purpose Facet: Prescriptive versus Explorative .. 103

5.2.3 Target Facet: Customer-Specific versus Market-Oriented 104

5.2.4 Hints and Caveats ... 105

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 5/139

5.2.5 Further Considerations .. 105

5.3 Configuring a Requirements Engineering Process ... 106

5.3.1 Typical Combinations of Facets .. 106

5.3.2 Other RE Processes .. 109

5.3.3 How to Configure RE Processes .. 109

5.4 Further Reading .. 110

6. Management Practices for Requirements .. 111

6.1 What is Requirements Management? .. 112

6.2 Life Cycle Management .. 113

6.3 Version Control.. 114

6.4 Configurations and Baselines .. 116

6.5 Attributes and Views ... 118

6.6 Traceability ... 120

6.7 Handling Change ... 122

6.8 Prioritization .. 124

6.9 Further Reading .. 127

7. Tool Support ... 128

7.1 Tools in Requirements Engineering ... 128

7.2 Introducing Tools ... 130

7.2.1 Consider All Life Cycle Costs beyond License Costs ... 130

7.2.2 Consider Necessary Resources ... 130

7.2.3 Avoid Risks by Running Pilot Projects ... 130

7.2.4 Evaluate the Tool according to Defined Criteria.. 131

7.2.5 Instruct Employees on the Use of the Tool .. 132

7.3 Further Reading .. 132

8. References ... 133

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 6/139

Foreword

This handbook provides an introduction to Requirements Engineering based on the
syllabus version 3.0 for the Certified Professional for Requirements Engineering
(CPRE)—Foundation Level according to the IREB standard. It complements the
syllabus and addresses three groups of readers:

 Students and practitioners who want to learn about Requirements

Engineering and take the certification exam can use this handbook as a

companion book to training courses offered by training providers, as well as

for self-study and individual preparation for the certification exam. This

handbook may also be used to refresh existing knowledge about

Requirements Engineering, for example, when preparing for a CPRE

Advanced Level course and exam.

 Training providers who offer trainings on the CPRE Foundation Level can use

this handbook as a complement to the syllabus for developing their training

materials or as a study text for the participants in their trainings.

 Professionals in industry who want to apply proven RE concepts and

knowledge in their practical work will find a wealth of useful information in

this handbook.

This handbook also provides a link between the syllabus, which lists and explains the
learning objectives, and the literature on Requirements Engineering. Every chapter
comes with references to the literature and hints for further reading. The structure of
the handbook matches the structure of the syllabus.

The terminology used in this handbook is based on the CPRE Glossary of Require-
ments Engineering Terminology [Glin2020]. We recommend downloading this
glossary from the IREB website and use it as a terminology reference.

You find more information about the CPRE certification program, including the
syllabi, glossary, examination regulations and sample exam questions on the IREB
website at https://www.ireb.org.

Both the authors and IREB have invested a significant amount of time and effort into
preparing, reviewing and publishing this handbook. We hope that you will enjoy
studying this handbook. If you detect any errors or have suggestions for
improvement, please contact us at info@ireb.org.

We would like to thank all people who contributed to the creation and publication of
this handbook. Karol Frühauf, Rainer Grau and Camille Salinesi carefully reviewed the
manuscript and provided valuable suggestions for improvement. Tracey Duffy did an
English review. We also thank the IREB Council Shepherds of this handbook, Xavier
Franch and Frank Houdek, for their feedback and support. Stefan Sturm provided
encouragement and logistic support. We also thank our spouses and families for their
patience and support.

Martin Glinz, Hans van Loenhoud, Stefan Staal, and Stan Bühne

November 2020

https://www.ireb.org/
mailto:info@ireb.org

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 7/139

Version History

Version Date Comment Authors

1.0.0 November
11, 2020

First release Martin Glinz
Hans van Loenhoud
Stefan Staal
Stan Bühne

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 8/139

1. Introduction and Overview

In this chapter, you will learn what Requirements Engineering (RE) is all about and
the value that RE brings.

1.1 Requirements Engineering: What

Since the beginning of human evolution, humans have been building technical and
organizational systems to support them in completing tasks or achieving objectives.
With the rise of engineering, humans have also started to build systems that automate
human tasks.

Whenever humans decide to build a system to support or automate human tasks, they
have to figure out what to build. This means that they have to learn about the desires
and needs of the persons or organizations who will use the system, benefit from it, or
be impacted by it. In other words, they need to know about the requirements for that
system. Requirements form the basis for any development or evolution of systems or
parts thereof. Requirements always exist, even when they are not explicitly captured
and documented.

The term requirement denotes three concepts [Glin2020]:

DEFINITION 1.1. REQUIREMENT: 1. A need perceived by a stakeholder. 2. A capability or
property that a system shall have. 3. A documented representation of a need,
capability, or property.

A systematically represented collection of requirements—typically for a system—
that satisfies given criteria is called a requirements specification.

We distinguish between three kinds of requirements:

 Functional requirements concern a result or behavior that shall be provided

by a function of a system. This includes requirements for data or the

interaction of a system with its environment.

 Quality requirements pertain to quality concerns that are not covered by

functional requirements — for example, performance, availability, security,

or reliability.

 Constraints are requirements that limit the solution space beyond what is

necessary to meet the given functional requirements and quality

requirements.

Note that dealing with requirements for projects or development processes is outside
the scope of this handbook.

Distinguishing between functional requirements, quality requirements, and
constraints is not always straightforward. One proven way to differentiate between
them is to ask for the concern that a requirement addresses: if the concern is about
required results, behavior, or interactions, we have a functional requirement. If it is a
quality concern that is not covered by the functional requirements, we have a quality
requirement. If the concern is about restricting the solution space but is neither a
functional nor a quality requirement, we have a constraint. The popular rule “What
the system shall do → functional requirement vs. how the system shall do it → quality
requirement” frequently leads to misclassifications, particularly when requirements
are specified in great detail or when quality requirements are very important.

The need for

requirements

Requirement

Kinds of requirements

How to distinguish

between functional

requirements, quality

requirements, and

constraints

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 9/139

For example, the requirement “The customer entry form shall contain fields for the
customer’s name and first name, taking up to 32 characters per field, displaying at
least 24 characters, left-bound, with a 12 pt. sanserif font” is a functional requirement
even though it contains a lot of information about how. As another example, consider
a system that processes the measurement data produced by the detector of a high-
energy particle accelerator. Such detectors produce enormous quantities of data in
real time. If you ask a physicist “What shall the system do?”, one of the first answers
would probably be that the system must be able to cope with the volume of data
produced. However, requirements concerning data volume or processing speed are
quality requirements [Glin2007] and not functional requirements.

When people take a systematic and disciplined approach to the specification and
management of requirements, we call this Requirements Engineering (RE). The
following definition of Requirements Engineering also reflects why we perform RE.

DEFINITION 1.2. REQUIREMENTS ENGINEERING (RE): The systematic and disciplined
approach to the specification and management of requirements with the goal of
understanding the stakeholders’ desires and needs and minimizing the risk of delivering
a system that does not meet these desires and needs.

The concept of stakeholders [GlWi2007] is a fundamental principle of Requirements
Engineering (see Chapter 2).

DEFINITION 1.3. STAKEHOLDER: A person or organization who influences a system’s
requirements or who is impacted by that system.

Note that influence can also be indirect. For example, some stakeholders may have to
follow instructions issued by their managers or organizations.

Following the definition in the CPRE RE glossary [Glin2020], we use the term system
in a broad sense in this handbook:

DEFINITION 1.4. SYSTEM: 1. In general: a principle for ordering and structuring. 2. In
engineering: a coherent, delimitable set of elements that—by coordinated action—
achieve some purpose.

Note that a system may comprise other systems or components as subsystems. The
purposes achieved by a system may be delivered by:

 Deploying the system at the place(s) where it is used

 Selling/providing the system to its users as a product

 Having providers who offer the system’s capabilities to users as services

We therefore use the term system as an umbrella term which includes products,
services, apps, or devices.

1.2 Requirements Engineering: Why

Developing systems (building new ones as well as evolving existing ones) is an
expensive endeavor and constitutes a high risk for all participants. At the same time,
systems that have practical relevance are too large for a single person to grasp
intellectually. Therefore, engineers have developed various principles and practices
for handling the risk when developing a system and for mastering the intellectual
complexity. Requirements Engineering provides the principles and practices for the
requirements perspective.

Requirements

Engineering

Stakeholder

System

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 10/139

Adequate Requirements Engineering (RE) adds value [Glin2016], [Glin2008] to the
process of developing a system:

 RE minimizes the risk of failure or costly modifications in later development

stages. The early detection and correction of wrong or missing requirements

is much cheaper than the correction of errors and rework caused by missing

or wrong requirements in later development stages or even after

deployment of a system.

 RE eases the intellectual complexity involved in understanding the problem

that a system is supposed to solve and reflecting on potential solutions.

 RE provides a proper basis for estimating development effort and cost.

 RE is a prerequisite for testing the system properly.

Typical symptoms of inadequate RE are missing, unclear, or wrong requirements due
to:

 Development teams rushing right into implementing a system due to

schedule pressure

 Communication problems between parties involved—in particular, between

stakeholders and system developers and among the stakeholders

themselves

 The assumption that the requirements are self-evident, which is wrong in

most cases

 People conducting RE activities without having adequate education and

skills

1.3 Requirements Engineering: Where

Requirements Engineering can be applied to requirements for any kind of system.
However, the dominant application case for RE today involves systems in which
software plays a major role. Such systems consist of software components, physical
elements (technical products, computing hardware, devices, sensors, etc.), and
organizational elements (persons, positions, business processes, legal and
compliance issues, etc.).

Systems that contain both software and physical components are called cyber-
physical systems.

Systems that span software, hardware, people, and organizational aspects are called
socio-technical systems.

Depending on the perspective taken, there are different sorts of requirements.

System requirements describe how a system shall work and behave—as observed at
the interface between the system and its environment—so that the system satisfies
its stakeholders’ desires and needs. In the case of pure software systems, we speak of
software requirements.

Stakeholder requirements express stakeholders’ desires and needs that shall be
satisfied by building a system, seen from the stakeholders’ perspective.

User requirements are a subset of the stakeholder requirements. They cover the
desires and needs of the users of a system.

Value of adequate RE

Symptoms of

inadequate RE

Application of RE

Cyber-physical systems

Socio-technical systems

System requirements

Stakeholder

requirements

User requirements

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 11/139

Domain requirements specify required domain properties of a socio-technical or
cyber-physical system.

Business requirements focus on the business goals, objectives, and needs of an
organization that shall be achieved by employing a system (or a collection of systems).

The sorts of requirements as defined above match those defined in the standard
[ISO29148], with the exception of domain requirements. Due to their importance, we
treat domain requirements as a sort of their own. The role and importance of domain
requirements are discussed in Section 2.2, Principle 4.

1.4 Requirements Engineering: How

The major tasks in RE are the elicitation (Chapter 4), documentation (Chapter 3),
validation (Section 4.4), and management (Chapter 6) of requirements. Tool support
(Chapter 7) can help perform these tasks. Requirements analysis and requirements
conflict resolution are considered to be part of elicitation.

However, there is no universal process that describes when and how RE should be
performed when developing a system. For every system development that needs RE
activities, a suitable RE process must be tailored from a broad range of possibilities.
Factors that influence this tailoring include, for example:

 The overall system development process—in particular, linear and plan-

driven vs. iterative and agile

 The development context—in particular, the relationship between the

supplier, the customer(s), and the users of a system

 The availability and capability of the stakeholders

There is also a mutual dependency between the requirements work products to be
produced (see Chapter 3.1) and the RE process to be chosen. More details are given
in Chapter 5.

1.5 The Role and Tasks of a Requirements Engineer

In practice, very few people have the job title Requirements Engineer. We consider
people to act in the role of a Requirements Engineer when they:

 Elicit, document, validate, and/or manage requirements as part of their

duties

 Have in-depth knowledge of RE, which enables them to define RE processes,

select appropriate RE practices, and apply these practices properly

 Are able to bridge the gap between the problem and potential solutions

The role of Requirements Engineer is part of several job functions defined by
organizations. For example, business analysts, application specialists, product
owners, systems engineers, and even developers may act in the role of a
Requirements Engineer. Having RE knowledge and skills is also useful for many other
professionals—for example, designers, testers, system architects, or CTOs.

1.6 What to Learn about Requirements Engineering

The set of skills that a Requirements Engineer must learn consists of various
elements. The foundational elements are covered in the subsequent chapters of this
handbook.

Domain requirements

Business requirements

Major tasks of RE

No universal process

Requirements Engineer

is a role

What you will learn in

this handbook

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 12/139

Beyond technical and analytical skills, a Requirements Engineer also needs what are
referred to as soft skills: the ability to listen, moderate, negotiate, and mediate, as well
as empathy for stakeholders and openness to the needs and ideas of others.

RE is governed by a set of fundamental principles that apply to all tasks, activities, and
practices of RE. These principles are presented in Chapter 2.

Requirements can be documented in various forms. Various work products can be
created at different levels of maturity and detail, from rather informal and temporary
ones to very detailed and structured work products that adhere to strict
representation rules. It is important to select work products and forms of
documentation that are adequate for the situation at hand and to create the chosen
work products properly. Work products and documentation practices are presented
in Chapter 3.

Requirements can be elaborated (i.e., elicited and validated) with various practices. A
Requirements Engineer must be able to select the practices that are best suited in a
given situation and apply these practices properly. Elaboration practices are
presented in Chapter 4.

Understanding possible processes and working structures enables Requirements
Engineers to define a way of working that fits with the specific needs of the system
development situation at hand. Processes and working structures are presented in
Chapter 5.

Existing requirements can be managed with various practices. Requirements
Engineers should be able to understand which requirements management practices
support them for which tasks. Management practices are presented in Chapter 6.

Tools make RE more efficient. Requirements Engineers need to know how RE tools
can support them and how to select a suitable tool for their situation. Tool support is
discussed briefly in Chapter 7.

1.7 Further Reading

The RE terminology used in this handbook is defined in the CPRE Glossary of
Requirements Engineering Terminology [Glin2020]. Glinz and Wieringa [GlWi2007]
explain the notion of stakeholders. Lawrence, Wiegers, and Ebert [LaWE2001] briefly
discuss the risks and pitfalls of RE.

Gause and Weinberg [GaWe1989] wrote one of the first textbooks on RE, which is still
worth looking at. Pohl [Pohl2010], Robertson and Robertson [RoRo2012] and
Wiegers and Beatty [WiBe2013] are popular textbooks on RE. The course notes of
Glinz [Glin2019] provide a slide-based introduction to RE. The textbook by van
Lamsweerde [vLam2009] presents a goal-oriented approach to RE. Jackson
[Jack1995] contributes an insightful collection of essays about software
requirements.

Please be aware that the official textbook for the IREB CPRE Foundation Level version
2.2 [PoRu2015] is no longer fully aligned with version 3.0 of the CPRE Foundation
Level Syllabus, on which this handbook is based. However, this textbook still provides
a concise introduction to RE and will be updated soon.

There are also textbooks in languages other than English. For example, Badreau and
Boulanger [BaBo2014] have written an RE textbook in French. The books by Ebert
[Eber2014] and Rupp [Rupp2014] are popular RE textbooks written in German.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 13/139

2. Fundamental Principles of Requirements Engineering

In this chapter, you will learn about nine basic principles of Requirements
Engineering (RE).

2.1 Overview of Principles

RE is governed by a set of fundamental principles that apply to all tasks, activities, and
practices in RE. A task is a coherent chunk of work to be done (for example, eliciting
requirements). An activity is an action or a set of actions that a person or group
performs to accomplish a task (for example, identifying stakeholders when eliciting
requirements). A practice is a proven way of how to carry out certain types of tasks
or activities (for example, using interviews to elicit requirements from stakeholders).

The principles listed in Table 2.1 form the basis for the practices presented in the
subsequent chapters of this handbook.

Table 2.1 Nine fundamental principles of Requirements Engineering

1 Value orientation: Requirements are a means to an end, not an end in itself

2 Stakeholders: RE is about satisfying the stakeholders’ desires and needs

3 Shared understanding: Successful systems development is impossible without a
common basis

4 Context: Systems cannot be understood in isolation

5 Problem, requirement, solution: An inevitably intertwined triple

6 Validation: Non-validated requirements are useless

7 Evolution: Changing requirements are no accident, but the normal case

8 Innovation: More of the same is not enough

9 Systematic and disciplined work: We can’t do without in RE

2.2 The Principles Explained

Principle 1 – Value orientation: Requirements are a means to an end, not an end

in itself

The act of writing requirements is not a goal by itself. Requirements are useful—and
the effort invested in Requirements Engineering is justified—only if they add value
[Glin2016], [Glin2008], cf. Section 1.2. We define the value of a requirement as being
its benefit minus its cost. The benefit of a requirement is the degree to which it
contributes to building successful systems (that is, systems that satisfy the desires
and needs of their stakeholders) and to reducing the risk of failure and costly rework
in system development. The cost of a requirement amounts to the cost for eliciting,
validating, documenting, and managing it.

Reducing the risk of rework during development is a constituent part of the benefit of
a well-crafted requirement. Detecting and fixing a missed or wrong requirement
during implementation or when the system is already in operation can easily cost one
or two orders of magnitude more than specifying that requirement properly right
from the beginning. Consequently, a significant amount of the benefit of requirements
comes from costs saved during the implementation and operation of a system.

Value of requirements:

benefit minus costs

Benefit from reduced

rework

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 14/139

In other words, the benefits of RE are often long-term benefits, whereas the costs are
immediate. This must be kept in mind when setting up a new project. Reducing costs
in the short term by spending less for RE has a price: it considerably increases the risk
of expensive rework in later stages of the project.

The value of Requirements Engineering can be considered to be the cumulative value
of the requirements specified. As customers typically pay for systems to be
implemented, but not for the requirements needed to do that, the economic value of
RE is mostly an indirect one. This effect is reinforced by the fact that the benefit of
requirements that stem from reduced rework costs is an indirect one: it saves costs
during implementation and operation.

The economic effects of Requirements Engineering are mostly indirect ones; RE as
such just costs.

To optimize the value of a requirement, Requirements Engineers have to strike a
proper balance between the benefit and the cost of a requirement. For example,
eliciting and documenting a stakeholder’s need as a requirement eases the
communication of this need among all parties involved. This increases the probability
that the system to be built will eventually satisfy this need, which constitutes a
benefit. The less ambiguously and the more precisely the requirement is stated, the
higher its benefit, because this reduces the risk of costly rework due to
misinterpretation of the requirements by the system architects and development
teams. On the other hand, increasing the degree of unambiguity and precision of a
requirement also increases the cost involved in eliciting and documenting the
requirement.

Actually, the amount of RE required to achieve requirements with optimal value
depends on numerous factors given by the specific situation in which requirements
are being created and used. Obviously, the risk of building a system that eventually
does not satisfy the desires and needs of its stakeholders, which may result in failure
or costly rework, is the driving force that determines the amount of RE required. First
and foremost, the criticality of every requirement should be assessed in terms of the
importance of the stakeholder(s) who state the requirement (see Principle 2) and the
impact of missing the requirement (Figure 2.1).

Figure 2.1 Assessing the criticality of a requirement [Glin2008]

Value of Requirements

Engineering

Optimizing the value of

requirements

Influencing factors

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 15/139

In addition, the following influencing factors should be considered:

 Effort needed to specify the requirement

 Distinctiveness of the requirement (how much it contributes to the success

of the overall system)

 Degree of shared understanding between stakeholders and developers and

among stakeholders

 Existence of reference systems (that can serve as a specification by example)

 Length of feedback cycle (the time between getting a requirement wrong

and detecting the error)

 Kind of customer-supplier relationship

 Regulatory compliance required

We summarize this issue in two rules of thumb:

 The optimal amount of RE to be invested depends on the specific situation

and is determined by many influencing factors.

 The effort invested into RE should be inversely proportional to the risk you

are willing to take.

Principle 2 – Stakeholders: RE is about satisfying the stakeholders’ desires and

needs

The eventual goal of building a system is that the system, when it is used, solves
problems that its users need to solve and satisfies the expectations of further
people—for example, those who have ordered and paid for the system, or those who
are responsible for security in the organization that uses the system. Therefore, we
have to figure out the needs and expectations of the people who have a stake in the
system, the system’s stakeholders [GlWi2007]. The core goals of RE are understanding
the stakeholders’ desires and needs and minimizing the risk of delivering a system that
does not meet these desires and needs; see Definition 1.2 in Section 1.2.

Every stakeholder has a role in the context of the system to be built—for example,
user, client, customer, operator, or regulator. Depending on the RE process used, the
developers of a system can also be stakeholders. This is frequently the case in agile
and in market-oriented development. A stakeholder may also have more than one
role at the same time. For every relevant stakeholder role, suitable people acting in
this role must be selected as representatives.

For stakeholder roles with too many individuals or when individuals are unknown,
personas (fictitious characters that represent a group of users with similar
characteristics) can be defined as a substitute. For systems that are already in use,
users who provide feedback about the system or ask for new features should also be
considered as stakeholders.

It makes sense to classify the stakeholders into three categories with respect to the
degree of influence that a stakeholder has on the success of the system:

 Critical: not considering these stakeholders will result in severe problems

and probably make the system fail or render it useless.

 Major: not considering these stakeholders will have an adverse impact on

the success of the system but not make it fail.

 Minor: not considering these stakeholders will have no or minor influence on

the success of the system.

Stakeholder roles

Personas

Classifying stakeholders

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 16/139

This classification is helpful when assessing the criticality of a requirement (see
Figure 2.1) and when negotiating conflicts between stakeholders (see below).

It is not sufficient to consider only the requirements of end users and customers.
Doing this would mean that we might miss critical requirements from other
stakeholders, which can easily lead to development projects that fail or overrun their
budgets and deadlines.

Involving the right people in the relevant stakeholder roles is crucial for successful
RE.

Practices for identifying, prioritizing, and working with stakeholders are discussed in
Chapter 4.

Stakeholders in different roles naturally have different viewpoints [NuKF2003] of a
system to be developed. For example, users typically want a system to support their
tasks in an optimal way, the managers who order the system want to get it at a
reasonable cost, and the organization’s chief security officer cares primarily about the
security of the system. Even stakeholders in the same role may have different needs.
For example, in the group of end users, casual users have user interface requirements
that may differ strongly from those of professional users.

As a consequence, it is not sufficient to just collect requirements from stakeholders.
It is vital to identify inconsistencies and conflicts between the requirements of
different stakeholders and to resolve these, be it by finding a consensus, by
overruling, or by specifying system variants for stakeholders who factually have
different needs; see Section 4.3.

Principle 3 – Shared understanding: Successful systems development is impossible

without a common basis

System development, including RE, is a multi-person endeavor. To make such an
endeavor a success, the people involved need a shared understanding of the problem
and the requirements that stem from it [GlFr2015].

RE creates, fosters, and secures shared understanding between and among the parties
involved: stakeholders, Requirements Engineers, and developers. We distinguish
between two forms of shared understanding:

 Explicit shared understanding is achieved through carefully elicited,

documented, and agreed requirements. This is the primary goal of RE in

plan-driven processes.

 Implicit shared understanding is based on shared knowledge about needs,

visions, context, etc. In agile RE, when requirements are not fully specified in

writing, reliance on implicit shared understanding is key.

Both implicit and explicit shared understanding may be false, meaning that people
believe that they have a shared understanding of an issue but in fact interpret this
issue in different ways. Therefore, we can never rely blindly on shared understanding.
Instead, the task of RE is to create and foster shared understanding and also secure
it—that is, assess whether there is a true shared understanding. To limit the effort
involved, it is vital to concentrate on shared understanding about relevant things—
that is, those aspects that lie within the context boundary of a system (cf. Principle 4).
Even with a perfect shared understanding, important requirements may still be
missed because nobody considered them. Figure 2.2 illustrates different situations of
shared understanding with a simple example of a couple that wants to install a swing
in their garden for their children [Glin2019]. The sticky note in the middle symbolizes
a written specification.

Considering only end

users and customers

does not suffice

Stakeholders have

different viewpoints

Managing

inconsistencies and

conflicts

The need for shared

understanding

Explicit and implicit

shared understanding

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 17/139

Figure 2.2 Different situations of shared understanding—illustrated with an example of a
couple that wants to install a swing for their children

Proven practices for achieving shared understanding include working with glossaries
(Section 3.5), creating prototypes (Section 3.7), or using an existing system as a
reference point.

The main means for assessing true explicit shared understanding in RE is thoroughly
validating all specified requirements (cf. Principle 6 and Section 4.4). Practices for
assessing implicit shared understanding include providing examples of expected
outcomes, building prototypes, or estimating the cost of implementing a requirement.
The most important practice for reducing the impact of false shared understanding is
using a process with short feedback loops (Chapter 5).

There are factors that constitute enablers or obstacles of shared understanding. For
example, enablers are:

 Domain knowledge

 Domain-specific standards

 Previous successful collaboration

 Existence of reference systems known by all people involved

 Shared culture and values

 Informed (not blind!) mutual trust

Obstacles are:

 Geographic distance

 Supplier-customer relationship guided by mutual distrust

 Outsourcing

 Regulatory constraints

 Large and diverse teams

 High turnover among the people involved

The lower the probability and impact of false shared understanding and the better
the ratio between enablers and obstacles, the more RE can rely on implicit shared
understanding. Conversely, the fewer enablers and the more obstacles to shared
understanding we have and the higher the risk and impact of false shared under-
standing for a requirement, the more such requirements have to be specified and
validated explicitly.

Achieving shared

understanding in RE

Assessing shared

understanding in RE

Enablers and obstacles

Relying on shared

understanding

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 18/139

Principle 4 – Context: Systems cannot be understood in isolation

Requirements never come in isolation. They refer to systems that are embedded in a
context. While the term context in general denotes the network of thoughts and
meanings needed for understanding phenomena or utterances, it has a special
meaning in RE.

DEFINITION 2.1. CONTEXT (IN RE): The part of a system’s environment being relevant for
understanding the system and its requirements.

The context of a system is delimited by the system boundary and the context
boundary [Pohl2010] (see Figure 2.3).

DEFINITION 2.2. CONTEXT BOUNDARY: The boundary between the context of a system and
those parts of the application domain that are irrelevant for the system and its
requirements.

The context boundary separates the relevant part of the environment of a system to
be developed from the irrelevant part—that is, the part that does not influence the
system to be developed and, thus, does not have to be considered during
Requirements Engineering.

DEFINITION 2.3. SYSTEM BOUNDARY: The boundary between a system and its
surrounding context.

The system boundary delimits the system as it shall be after its implementation and
deployment. The system boundary is often not clear initially and it may change over
time. Clarifying the system boundary and defining the external interfaces between a
system and the elements in its context are genuine RE tasks.

The system boundary frequently coincides with the scope of a system development.

DEFINITION 2.4. SCOPE: The range of things that can be shaped and designed when
developing a system.

Sometimes, however, the system boundary and its scope do not match (see Figure
2.3). There may be components within the system boundary that have to be reused
as they are (i.e., they cannot be shaped or designed), which means that they are out of
scope. On the other hand, there may be things in the system context that can be re-
designed when the system is developed, which means that they are in scope.

It is not sufficient to consider just the requirements within the system boundary.

First, when the scope includes parts of the system context, as shown in Figure 2.3,
context changes within the scope may impact the system’s requirements. For
example, when a business process shall be partially automated by a system, it may be
useful to adapt the process in order to simplify its automation. Obviously, such
adaptation impacts the requirements of the system.

Context

Context boundary

System boundary

Scope

Considering context

changes in RE

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 19/139

Figure 2.3 System, context, and scope

Second, there may be real-world phenomena in the system context that a system shall
monitor or control. Requirements for such phenomena must be stated as domain
requirements and must be adequately mapped to system requirements. For example,
in a car equipped with an automatic gearbox, there is a requirement that the parking
position can be engaged only when the car is not moving. In the context of a software
system that controls the gearbox, this is a domain requirement. In order to satisfy this
requirement, the controller needs to know whether or not the car is moving.
However, the controller cannot sense this phenomenon directly. Hence, the real-
world phenomenon “car is not moving” must be mapped to a phenomenon that the
control system can sense—for example, input from a sensor that creates pulses when
a wheel of the car is spinning. The domain requirement concerning engaging the
parking position is then mapped to a system requirement such as “The gearbox
control system shall enable the engagement of the parking position only if no pulses
are received from the wheel spinning sensors.”

Third, there may be requirements that cannot be satisfied by any system
implementation unless certain domain requirements and domain assumptions in the
context of the system hold. Domain assumptions are assumptions about real-world
phenomena in the context of a system. For example, consider an air traffic control
system (ATS). The requirement “R1: The ATS shall maintain accurate positions for all
aircraft controlled by the system” is an important system requirement. However, this
requirement can be met only if the radar in the context of the ATS satisfies the
requirements of correctly identifying all aircraft in the airspace controlled by the
radar and correctly determining their position. In turn, these requirements can be
satisfied only if all aircraft spotted by the radar respond properly to the interrogation
signals sent by the radar.

Furthermore, requirement R1 can be met only if certain domain assumptions in the
context of the ATS hold—for example, that the radar is not jammed by a malicious
attacker and that no aircraft are flying at an altitude that is lower than the radar can
detect.

RE goes beyond considering the requirements within the system boundary and
defining the external interfaces at the system boundary. RE must also deal with
phenomena in the system context.

Consequently, RE must also consider issues in the system context:

 If changes in the context may occur, how do they impact the requirements

for the system?

 Which requirements in the real-world context are relevant for the system to

be developed?

Mapping real-world

phenomena

Domain requirements

and domain

assumptions

RE has to consider the

context

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 20/139

 How can such real-world requirements be mapped adequately to

requirements for the system?

 Which assumptions about the context must hold such that the system will

work properly and the requirements in the real world will be met?

Principle 5 – Problem, requirement, solution: An inevitably intertwined triple

Problems, their solutions, and requirements are closely and inevitably intertwined
[SwBa1982]. Every situation in which people are not satisfied with the way they are
doing things can be considered as the occurrence of a problem. In order to eliminate
that problem, a socio-technical system may be developed and deployed. Requirements
for that system must be captured in order to make the system an effective solution to
the problem. Specifying requirements does not make sense if there is no problem to
solve or if no solution will be developed. Neither does it make sense to develop a
solution that is searching for a problem to solve or for requirements to satisfy.

It is important to note that problems, requirements, and solutions do not necessarily
occur in this order. For example, when designing an innovative system, solution ideas
create user needs that have to be worked out as requirements and implemented in an
actual solution.

Problems, requirements, and solutions can be intertwined in many ways:

 Hierarchical intertwinement: when developing large systems with a multi-

level hierarchy of subsystems and components, high-level requirements lead

to high-level design decisions, which in turn inform lower-level

requirements that lead to lower-level design decisions, etc.

 Technical feasibility: specifying non-feasible requirements is a waste of

effort; however, it may only be possible to assess the feasibility of a

requirement when exploring technical solutions.

 Validation: prototypes, which are a powerful means for validating

requirements, constitute partial solutions of the problem.

 Solution bias: different stakeholders may envisage different solutions for a

given problem, with the consequence that they specify different, conflicting

requirements for that problem.

The intertwinement of problems, requirements, and solutions also has consequences
for the development process for a system:

 Strictly separating RE from system design and implementation activities is

rarely possible. Therefore, strict waterfall development processes do not

work well.

 Nevertheless, Requirements Engineers aim to separate problems,

requirements, and solutions from each other as far as possible when

thinking, communicating, and documenting. This separation of concerns

makes RE tasks easier to handle.

Despite the inevitable intertwinement of problems, requirements, and solutions,
Requirements Engineers strive to separate requirements concerns from solution
concerns when thinking, communicating, and documenting.

Why problems,

requirements, and

solutions are

intertwined

Forms of intertwinement

Consequences of

intertwinement

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 21/139

Principle 6 – Validation: Non-validated requirements are useless

When a system is developed, the final system deployed shall satisfy the stakeholders’
desires and needs. However, performing this check at the very end of development is
very risky. In order to control the risk of unsatisfied stakeholders from the beginning,
validation of requirements must start during RE (see Figure 2.4).

Figure 2.4 Validation [Glin2019]

DEFINITION 2.5. VALIDATION: The process of confirming that an item (a system, a work
product, or a part thereof) matches its stakeholders’ needs.

In RE, validation is the process of confirming that the documented requirements
match the stakeholders’ needs; in other words, confirming whether the right
requirements have been specified.

Validation is a core activity in RE: there is no specification without validation.

When validating requirements, we have to check whether:

 Agreement about the requirements has been achieved among the

stakeholders (conflicts resolved, priorities set)

 The stakeholders’ desires and needs are adequately covered by the

requirements

 The domain assumptions (see Principle 4 above) are reasonable—that is, we

can expect that these assumptions can be met when the system is deployed

and operated

Practices for validating requirements are discussed in Section 4.4.

Principle 7 – Evolution: Changing requirements are no accident, but the normal

case

Every technical system is subject to evolution. Needs, businesses, and capabilities
change continuously. As a natural consequence, the requirements for systems that are
expected to satisfy needs, support businesses, and use technical capabilities will also
change. Otherwise, such systems and their requirements progressively lose their
value and eventually become useless.

A requirement may change while Requirements Engineers are still eliciting other
requirements, when the system is under implementation, or when it is deployed and
being used.

There are many reasons that lead to requests to change a requirement or a set of
requirements for a system, for example:

Why we need early

validation

Validation

Things to validate

Evolution is inevitable

Reasons for changing

requirements

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 22/139

 Changed business processes

 Competitors launching new products or services

 Clients changing their priorities or opinions

 Changes in technology

 Feedback from system users asking for new or changed features

 Detection of errors in requirements or detection of faulty domain

assumptions

Requirements may also change due to feedback from stakeholders when validating
requirements, due to the detection of faults in previously elicited requirements, or
due to changed needs.

As a consequence, Requirements Engineers must pursue two seemingly contradictory
goals:

 Permit requirements to change, because trying to ignore the evolution of

requirements would be futile.

 Keep requirements stable, because without some stability in the

requirements, the cost for change can become prohibitively high. Also,

development teams cannot develop systematically if requirements change

on a daily basis.

Requirements Engineers need to manage the evolution of requirements. Otherwise,
the evolution will manage them.

Change processes for requirements that address both goals are discussed in Section
6.7.

Principle 8 – Innovation: More of the same is not enough

While RE is concerned with satisfying the stakeholders’ desires and needs,
Requirements Engineers who just play the role of the stakeholders’ voice recorder,
specifying exactly what the stakeholders tell them, are doing the wrong job. Giving
stakeholders exactly what they want means missing out on the opportunity of doing
things better than before.

For example, imagine the following scenario. An insurance company wants to renew
the reporting system for its agents. The most frequently used report is a table with 18
columns, which is about twice as wide as the screen when displayed on the agents’
laptop computers. Viewing this report thus requires a lot of scrolling. The
stakeholders therefore want to be able to zoom in the report, using plus and minus
buttons on the screen. In this situation, good Requirements Engineers will not just
record this as a requirement. Instead, they will start to ask questions. It turns out that
the company is going to replace the agents’ laptops with tablets. Hence, implementing
two-finger gestures instead of the required buttons will make zooming much easier.
Furthermore, it turns out that three columns in the report can be eliminated with a
slight change to the reporting rules, which the company agrees to make. Also, only six
columns of the report are always needed; the remaining columns are used only in
special cases.

Taking this into account, the Requirements Engineers would suggest that the
stakeholders require that (1) the report shall show the same information as in the
current system, minus the content of the three eliminated columns; (2) when the
report is opened, only the six important columns are displayed in full width, while the
other columns are collapsed to minimal width; and (3) that agents can expand a
collapsed column by tapping its header (and collapse it again with another tap).

Enabling change while

preserving stability

Requirements Engineers

are not the

stakeholders’ voice

recorders

Example of how it could

work

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 23/139

This way, the agents will get a system that does not simply add a workaround for
viewing an oversized report. Instead, the system will solve the agents’ problem with
an innovative feature for filtering information and will also feature an intuitive means
of zooming.

This is how innovation emerges. Good Requirements Engineers are innovation-
aware: they strive not just to satisfy stakeholders but to make them happy, excited, or
feel safe [KSTT1984]. At the same time, they avoid the trap of believing that they know
everything better than the stakeholders do.

Good Requirements Engineers go beyond what their stakeholders tell them.

On a small scale, RE shapes innovative systems by striving for exciting new features
and ease of use. Beyond that, Requirements Engineers also need to look for the big
picture, exploring with the stakeholders whether there are any disruptive ways of
doing things, leading to large-scale innovation [MaGR2004].

Section 4.2 discusses several techniques for fostering innovation in RE.

Principle 9 – Systematic and disciplined work: We can’t do without in RE

RE is not an art but a discipline, which calls for RE to be performed in a systematic
and disciplined way. Regardless of the process(es) used to develop a system, we need
to employ suitable RE processes and practices for systematically eliciting,
documenting, validating, and managing requirements. Even when a system is
developed in an ad hoc fashion, a systematic and disciplined approach to RE (for
example, by systematically fostering shared understanding, see Principle 3) will
improve the quality of the resulting system.

Agility and flexibility are not valid excuses for an unsystematic, ad hoc style of work
in RE.

However, there is neither a universal RE process nor a universal set of RE practices
that work well in every given situation or at least in most situations: there is no “one
size fits all” in RE.

Systematic and disciplined work means that Requirements Engineers:

 Configure an RE process that is well suited for the problem at hand and fits

well with the process used for developing the system (see Chapter 5).

 From the set of RE practices and work products available, select those that

are best suited for the given problem, context, and working environment

(see Chapters 3, 4 and 6).

 Do not always use the same process, practices, and work products.

 Do not reuse processes and practices from past successful RE work without

reflection.

2.3 Further Reading

Glinz [Glin2008] discusses the value of quality requirements and of requirements in
general [Glin2016].

Glinz and Wieringa [GlWi2007] explain the notion and importance of stakeholders.

Glinz and Fricker [GlFr2015] discuss the role and importance of shared
understanding.

Innovation awareness

Shaping innovative

systems in RE

As a discipline, RE calls

for systematic and

disciplined work

No “one size fits all”

What Requirements

Engineers need to do

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 24/139

The papers by Jackson [Jack1995b] and Gunter et al. [GGJZ2000] are fundamental for
the problem of requirements in context. The role of context in RE is also discussed by
Pohl [Pohl2010].

Gause and Weinberg [GaWe1989] discuss the interdependence of problems and
solutions. Swartout and Balzer [SwBa1982] were the first to point out that creating a
complete specification before starting implementation is rarely possible.

Validation is covered in any RE textbook. Grünbacher and Seyff [GrSe2005] discuss
how to achieve agreement by negotiating requirements.

Kano et al. [KSTT1984] were among the first to stress the role of innovation. Maalej,
Nayebi, Johann, and Ruhe [MNJR2016] discuss the use of explicit and implicit user
feedback for RE. Maiden, Gitzikis, and Robertson [MaGR2004] discuss how creativity
can foster innovation in RE. Gorschek et al. [GFPK2010] outline a systematic
innovation process.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 25/139

3. Work Products and Documentation Practices

Traditional Requirements Engineering (RE) calls for the writing of a comprehensive,
complete, and unambiguous requirements specification [IEEE830], [Glin2016]. While
it is still appropriate to create fully-fledged requirements specifications in many
cases, there are also many other cases where the cost of writing such specifications
exceeds their benefit. For example, fully-fledged requirements specifications are
useful or even necessary when tendering or outsourcing the design and
implementation of a system or when a system is safety-critical and regulatory
compliance is required. On the other hand, where stakeholders and developers join
forces to define and develop a system iteratively, writing a comprehensive
requirements specification does not make sense. It is therefore vital in RE to adapt
the documentation to the project context and to select work products for
documenting requirements and requirements-related information that yield optimal
value for the project.

In this chapter, you will learn about the typical RE work products and how to create
them.

3.1 Work Products in Requirements Engineering

There are a variety of work products that are used in RE.

DEFINITION 3.1. WORK PRODUCT: A recorded intermediate or final result generated in a
work process.

We consider the term artifact as a synonym for work product. We prefer the term
work product over artifact to express the connotation that a work product is the
result of work performed in a work process.

According to this definition, an RE work product can be anything that expresses
requirements, from a single sentence or diagram to a system requirements
specification that covers hundreds of pages. It is also important to note that a work
product may contain other work products.

3.1.1 Characteristics of Work Products

Work products can be characterized by the following facets: purpose, size,
representation, lifespan, and storage.

Table 3.1 gives an overview of typical work products used in RE along with their
respective purpose (that is, what the work product specifies or provides) and typical
size. The table is structured into four groups: work products for single requirements,
sets of requirements, documentation structures, and other work products.

There are many different ways to represent a work product. In RE, representations
based on natural language, templates, and models are of particular importance. These
are discussed in Sections 3.2, 3.3, and 3.4, respectively. There are further
representations, such as drawings or prototypes, which are covered in Section 3.7.

Every work product has a lifespan. This is the period of time from the creation of the
work product until the point where the work product is discarded or becomes
irrelevant. We distinguish between three categories of work products with respect to
lifespan: temporary, evolving, and durable work products.

Work product

Artifact

Characterization of work

products

Representation

Lifespan

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 26/139

Temporary work products are created to support communication and create shared
understanding (for example, a sketch of a user-system interaction created in a
workshop). Temporary work products are discarded after use; no metadata is kept
about these work products.

Evolving work products grow in several iterations over time (for example, a collection
of user stories that grows in both the number of stories and the story content). Some
metadata (at least the owner, status, and revision history) should be kept for every
evolving work product. Depending on the importance and status of a work product,
change control procedures need to be applied when modifying an evolving work
product.

Durable work products have been baselined or released (for example, a requirements
specification that is part of a contract or a sprint backlog that is implemented in a
given iteration). A full set of metadata must be kept to manage the work product
properly and an elaborate change process must be followed to change a durable work
product (Chapter 6).

A temporary work product may become an evolving one when Requirements
Engineers decide to keep a work product and develop it further. In this case, some
metadata should be added in order to keep the evolution of the work product under
control. When an evolving work product is baselined or released, it changes its
lifespan status from evolving to durable.

Table 3.1 Overview of RE work products

Work product Purpose: The work product specifies
/provides

Size

Single requirement

Individual requirement A single requirement, typically in textual form S

User story A function or behavior from a stakeholder’s
perspective

S

Set of requirements

Use case A system function from an actor’s or user’s
perspective

S-M

Graphic model Various aspects, for example, context, function,
behavior (see Section 3.4)

M

Task description A task that a system shall perform S-M

External interface
description

The information exchanged between a system
and an actor in the system context

M

Epic A high-level view of a stakeholder need M

Feature A distinguishing characteristic of a system S-M

Documents or documentation structures

System, business, stake-
holder, or user require-
ments specification

A comprehensive requirements document L-XL

Product and sprint
backlog

A list of work items, including requirements M-L

Story map A visual arrangement of user stories M

Vision A conceptual imagination of a future system M

Temporary work

products

Evolving work products

Durable work products

Temporary → Evolving

→ Durable

Typical RE work

products

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 27/139

Work product Purpose: The work product specifies
/provides

Size

Other work products

Glossary Unambiguous and agreed common terminology M

Textual note or graphic
sketch

A memo for communication and understanding S

Prototype A specification by example, particularly for
understanding, negotiating, and validating
requirements

S-L

S: Small, M: Medium, L: Large, XL: Very large

Nowadays, most work products are stored electronically as files, in databases, or in
RE tools. Informal, temporary work products may also be stored on other media—
for example, paper or sticky notes on a Kanban board.

3.1.2 Abstraction Levels

Requirements and their corresponding work products occur at various abstraction
levels—from, for example, high-level requirements for a new business process, down
to requirements at a very detailed level, such as the reaction of a specific software
component to an exceptional event.

Business requirements, domain requirements, and stakeholder/user requirements
typically occur at a higher level of abstraction than system requirements. When a
system consists of a hierarchy of subsystems and components, we have system
requirements at the corresponding abstraction levels for subsystems and
components. As a consequence, requirements are frequently organized in three layers
of abstraction: the business, system, and component levels.

When business requirements and stakeholder requirements are expressed in durable
work products—such as business requirements specifications, stakeholder
requirements specifications, or vision documents—they precede the specification of
system requirements. For example, in contractual situations, where a customer
orders the development of a system from a supplier, the customer frequently creates
and releases a stakeholder requirements specification. The supplier then uses this as
the basis for producing a system requirements specification. In other projects,
business requirements, stakeholder requirements, and system requirements may co-
evolve.

Some work products, such as individual requirements, sketches, or process models,
occur at all levels. Other work products are specifically associated with certain levels.
For example, a system requirements specification is associated with the system level.
Note that an individual requirement at a high abstraction level may be refined into
several detailed requirements at more concrete levels.

The choice of the proper abstraction level depends on what is to be specified. It is
important, however, not to mix requirements that are at different abstraction levels.
For example, in the specification of a healthcare information system, when writing a
detailed requirement about photos on client ID cards, the subsequent paragraph
should not state a general system goal such as reducing healthcare cost while
maintaining the current service level for clients. In small and medium-sized work
products, requirements should be at more or less the same abstraction level. In large
work products such as a system requirements specification, requirements at different
levels of abstraction should be kept separate by structuring the specification
accordingly (Section 0).

Storing work products

Requirements occur at

various abstraction

levels

Typical layers: business,

system, components

Dependencies

Choosing a proper

abstraction level

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 28/139

Requirements naturally occur at different levels of abstraction. Selecting work
products that are adequate for a given level of abstraction and properly structuring
work products that contain requirements at multiple abstraction levels is helpful.

3.1.3 Level of Detail

When specifying requirements, Requirements Engineers have to decide on the level
of detail in which the requirements shall be specified. However, deciding which level
of detail is appropriate or even optimal for a given requirement is a challenging task.

For example, in a situation where the customer and the supplier of a system
collaborate closely, it might be sufficient to state a requirement about a data entry
form as follows: “The system shall provide a form for entering the personal data of
the customer.” In contrast, in a situation where the design and implementation of the
system are outsourced to a supplier with little or no domain knowledge, a detailed
specification of the customer entry form will be necessary.

The level of detail to which requirements should be specified depends on several
factors, in particular:

 The problem and project context: the harder the problem and the less

familiar the Requirements Engineers and developers are with the project

context, the more detail is necessary.

 The degree of shared understanding of the problem: when there is low

implicit shared understanding (see Principle 3 in Chapter 2), explicit,

detailed specifications are required to create the necessary degree of shared

understanding.

 The degree of freedom left to designers and programmers: less detailed

requirements give the developers more freedom.

 Availability of rapid stakeholder feedback during design and

implementation: when rapid feedback is available, less detailed

specifications suffice to control the risk of developing the wrong system.

 Cost vs. value of a detailed specification: the higher the benefit of a

requirement, the more we can afford to specify it in detail.

 Standards and regulations: Standards imposed and regulatory constraints

may mean that requirements have to be specified in more detail than would

otherwise be necessary.

There is no universally “right” level of detail for requirements. For every requirement,
the adequate level of detail depends on many factors. The greater the level of detail in
the requirements specified, the lower the risk of eventually getting something that
has unexpected or missing features or properties. However, the cost for the
specification increases as the level of detail increases.

3.1.4 Aspects to be Considered

Regardless of the RE work products being used, several aspects need to be considered
when specifying requirements [Glin2019].

First, as there are functional requirements, quality requirements, and constraints (see
Section 1.1), Requirements Engineers have to make sure that they cover all three
kinds of requirements when documenting requirements. In practice, stakeholders
tend to omit quality requirements because they take them for granted.

How much detail?

Factors affecting the

level of detail needed

Considering multiple

aspects

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 29/139

They also tend to specify constraints as functional requirements. It is therefore
important that the Requirements Engineers get this right.

When looking at functional requirements, we observe that they pertain to different
aspects, as, for example, a required data structure, a required order of actions, or the
required reaction to some external event. We distinguish between three major
aspects: structure and data, function and flow, and state and behavior.

The structure and data aspect focuses on requirements concerning the static
structure of a system and the (persistent) data that a system must know in order to
perform the required functions and deliver the required results.

The function and flow aspect deals with the functions that a system shall provide and
the flow of control and data within and between functions for creating the required
results from given inputs.

The state and behavior aspect concentrates on specifying the state-dependent
behavior of a system—in particular, how a system shall react to which external event
depending on the system’s current state.

When dealing with quality requirements, such as usability, reliability, or availability, a
quality model—for example, the model provided by ISO/IEC 25010 [ISO25010]—can
be used as a checklist.

Within the quality requirements, performance requirements are of particular
importance. Performance requirements deal with:

 Time (e.g., for performing a task or reacting to external events)

 Volume (e.g., required database size)

 Frequency (e.g., of computing a function or receiving stimuli from sensors)

 Throughput (e.g., data transmission or transaction rates)

 Resource consumption (e.g., CPU, storage, bandwidth, battery)

Some people also consider the required accuracy of a computation as a performance
requirement.

Whenever possible, measurable values should be specified. When values follow a
probability distribution, specifying just the average does not suffice. If the
distribution function and its parameters cannot be specified, Requirements Engineers
should strive to specify minimum and maximum values or 95 percent values in
addition to the averages.

Documenting quality requirements beyond performance requirements is notoriously
difficult.

Qualitative representations, such as “The system shall be secure and easy to use,” are
ambiguous and thus difficult to achieve and validate.

Quantitative representations are measurable, which is a big asset in terms of
systematically achieving and validating a quality requirement. However, they raise
principal difficulties (for example, how can we state security in quantitative terms?)
and can be quite expensive to specify.

Operationalized representations state a quality requirement in terms of functional
requirements for achieving the desired quality. For example, a data security
requirement may be expressed in terms of a login function that restricts the access to
the data and a function that encrypts the stored data. Operationalized representations
make quality requirements testable but may also imply premature design decisions.

Aspects within the

functional requirements

Structure and data

Function and flow

State and behavior

Quality requirements

Difficulty of

documenting quality

requirements

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 30/139

The often-heard rule “Only a quantified quality requirement is a good quality
requirement” is outdated and may lead to quality requirements having low or even
negative value due to the high effort involved in the quantification. Instead, a risk-
based approach should be used [Glin2008].

Qualitative representations of quality requirements suffice in the following situations:

 There is sufficient implicit shared understanding between stakeholders,

Requirements Engineers, and developers.

 Stakeholders, Requirements Engineers, and developers agree on a known

solution that satisfies the requirements.

 Stakeholders only want to give general quality directions and trust the

developers to get the details right.

 Short feedback loops are in place such that problems can be detected early.

When developers are able to generalize from examples, specifying quality
requirements in terms of quantified examples or comparisons to an existing system
is a cheap and effective way of documenting quality requirements.

Only in cases where there is a high risk of not meeting the stakeholders’ needs,
particularly when quality requirements are safety-critical, should a fully quantified
representation or an operationalization in terms of functional requirements be
considered.

When specifying constraints, the following categories of constraints should be
considered:

 Technical: given interfaces or protocols, components, or frameworks that

have to be used, etc.

 Legal: restrictions imposed by laws, contracts, standards, or regulations

 Organizational: there may be constraints in terms of organizational

structures, processes, or policies that must not be changed by the system.

 Cultural: user habits and expectations are to some extent shaped by the

culture the users live in. This is a particularly important aspect to consider

when the users of a system come from different cultures or when

Requirements Engineers and developers are rooted in a different culture to

the system’s users.

 Environmental: when specifying cyber-physical systems, environmental

conditions such as temperature, humidity, radiation, or vibration may have

to be considered as constraints; energy consumption and heat dissipation

may constitute further constraints.

 Physical: when a system comprises physical components or interacts with

them, the system becomes constrained by the laws of physics and the

properties of materials used for the physical components.

 Furthermore, particular solutions or restrictions demanded by important

stakeholders also constitute constraints.

Finally, requirements can only be understood in context (see Principle 4 in Chapter 2).
Consequently, a further aspect has to be considered, which we call context and
boundary.

Constraints

Constraint categories to

be considered

Context and boundary

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 31/139

The context and boundary aspect covers domain requirements and domain
assumptions in the context of the system, as well as the external interfaces between
the system and its environment at the system boundary.

There are many interrelationships and dependencies between the aspects mentioned
above. For example, a request issued by a user (context) may be received by the
system via an external interface (boundary), trigger a state transition of the system
(state and behavior), which initiates an action (function) followed by another action
(flow) that requires data with some given structure (structure and data) to provide a
result to the user (context) within a given time interval (quality).

Some work products focus on a specific aspect and abstract from the other aspects.
This is particularly the case for requirements models (Section 3.4). Other work
products, such as a system requirements specification, cover all these aspects. When
different aspects are documented in separate work products or in separate chapters
of the same work product, these work products or chapters must be kept consistent
with each other.

Many different aspects need to be considered when documenting requirements, in
particular, functionality (structure and data, function and flow, state and behavior),
quality, constraints, and surrounding context (context and boundary).

3.1.5 General Documentation Guidelines

Independently of the techniques used, there are some general guidelines that should
be followed when creating RE work products:

 Select a work product type that fits the intended purpose.

 Avoid redundancy by referencing content instead of repeating the same

content again.

 Avoid inconsistencies between work products, particularly when they cover

different aspects.

 Use terms consistently, as defined in the glossary.

 Structure work products appropriately—for example, by using standard

structures.

3.1.6 Work Product Planning

Each project setting and each domain is different, so the set of resulting work
products must be defined for each endeavor. The parties involved, particularly the
Requirements Engineers, stakeholders, and project/product owners or managers
need to agree upon the following issues:

 In which work products shall the requirements be recorded and for what

purpose (see Table 3.1)?

 Which abstraction levels need to be considered (Section 3.1.2)?

 Up to which level of detail must requirements be documented at each

abstraction level (Section 3.1.3)?

 How shall the requirements be represented in these work products (for

example, natural-language-based or model-based, see below) and which

notation(s) shall be used?

Interrelationships and

dependencies between

aspects

General guidelines

What to consider

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 32/139

Requirements Engineers should define the RE work products to be used at an early
stage in a project. Such early definition:

 Helps in the planning of efforts and resources

 Ensures that appropriate notations are used

 Ensures that all results are recorded in the right work products

 Ensures that no major reshuffling of information and “final editing” is

needed

 Helps to avoid redundancy, resulting in less work and better maintainability

3.2 Natural-Language-Based Work Products

Natural language, in both spoken and written form, has always been a core means for
communicating requirements for systems. Using natural language to write RE work
products has many advantages. In particular, natural language is extremely
expressive and flexible, which means that almost any conceivable requirement in any
aspect can be expressed in natural language. Furthermore, natural language is used
in everyday life and is taught at school, so no specific training is required to read and
understand requirements written in natural language.

Human evolution has shaped natural language as a means for spoken communication
between directly interacting people, where misunderstandings and missing
information can be detected and corrected rapidly. Hence, natural language is not
optimized for precise, unambiguous, and comprehensive communication by means of
written documents. This constitutes a major problem when writing technical
documentation (such as requirements) in natural language. In contrast to
communication in spoken natural language, where the communication is
contextualized and interactive with immediate feedback, there is no natural means
for rapidly detecting and correcting ambiguities, omissions, and inconsistencies in
texts written in natural language. On the contrary, finding such ambiguities,
omissions, and inconsistencies in written texts is difficult and expensive, particularly
for work products that contain a large amount of natural language text.

The problem can be mitigated to some extent by writing technical documentation
consciously, following proven rules and avoiding known pitfalls.

When writing requirements in natural language, Requirements Engineers can avoid
many potential misunderstandings by applying some simple rules:

 Write short and well-structured sentences. The rule of thumb is to express a

single requirement in one sentence in natural language. To achieve a good

structure, Requirements Engineers should use phrase templates (Section

3.3).

 Create well-structured work products. Besides writing well-structured

sentences (see above), work products written in natural language should

also be well-structured as a whole. A proven way to do this is by using a

hierarchical structure of parts, chapters, sections, and subsections, as is

usually done in technical books. Document templates (Section 3.3) help you

to achieve a good structure.

 Define and consistently use a uniform terminology. Creating and using a

glossary (Section 3.5) is the core means for avoiding misunderstandings and

inconsistencies about terminology.

Define RE work products

early

Advantages

Problems

Writing rules

Short sentences

Structured work

products

Uniform terminology

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 33/139

 Avoid using vague or ambiguous terms and phrases.

 Know and avoid the pitfalls of technical writing (see below).

When writing technical documents in natural language, there are some well-known
pitfalls that should be avoided or things that need to be used with care (see, for
example, [GoRu2003]).

Requirements Engineers should avoid writing requirements that contain the
following:

 Incomplete descriptions. Verbs in natural language typically come with a set

of placeholders for nouns or pronouns. For example, the verb “give” has

three placeholders for who gives what to whom. When writing a requirement

in natural language, all placeholders of the verb used should be filled.

 Unspecific nouns. Using nouns such as “the data” or “the user” leaves too

much room for different interpretations by different stakeholders or

developers. They should be replaced by more specific nouns or be made

more specific by adding adjectives or assigning them a well-defined type.

 Incomplete conditions. When describing what shall be done, many people

focus on the normal case, omitting exceptional cases. In technical writing,

this is a trap to avoid: when something happens only if certain conditions are

true, such conditions shall be stated, providing both then and else clauses.

 Incomplete comparisons. In spoken communication, people tend to use

comparatives (for example, “the new video app is much better”) without

saying what they are comparing to, typically assuming that this is clear from

the context. In technical writing, comparisons should include a reference

object, for example, “faster than 0.1 ms”.

There are some further things that Requirements Engineers need to use with care, as
they constitute potential pitfalls:

 Passive voice. Sentences in passive voice have no subject. If a requirement is

stated in the passive voice, this may hide who is responsible for the action

described in the requirement, leading to an incomplete description.

 Universal quantifiers. Universal quantifiers are words such as all, always, or

never, which are used to make statements that are universally true. In

technical systems, however, such universal properties are rare. Whenever

Requirements Engineers use a universal quantifier, they need to reflect on

whether they are stating a truly universal property or whether they are

instead specifying a general rule that has exceptions (which they also need

to specify). They should apply the same caution when using “either-or”

clauses, which, by their semantics, exclude any further exceptional cases.

 Nominalizations. When a noun is derived from a verb (for example,

“authentication” from “to authenticate”), linguists call this a nominalization.

When specifying requirements, Requirements Engineers need to handle

nominalizations with care because a nominalization may hide unspecified

requirements. For example, the requirement “Only after successful

authentication, the system shall provide a user access to (…)” implies that a

procedure for authenticating users exists.

Vagueness, ambiguity

Knowing the pitfalls

Things to avoid

Incomplete descriptions

Unspecific nouns

Incomplete conditions

Incomplete comparisons

Things to handle with

care

Passive voice

Universal quantifiers

Nominalizations

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 34/139

When writing such a requirement, therefore, the Requirements Engineer

must check whether there are also requirements about the procedure for

authenticating legitimate users.

Natural language is a very powerful means for writing requirements. To mitigate the
inherent disadvantages of using natural language for technical documentation,
Requirements Engineers should follow proven writing rules and avoid well-known
pitfalls.

3.3 Template-Based Work Products

As mentioned in Section 3.2 above, using templates is a proven means for writing
good, well-structured work products in natural language and thus mitigating some of
the weaknesses of natural language for technical writing. A template is a kind of
ready-made blueprint for the syntactic structure of a work product. When using
natural language in RE, we distinguish between three classes of templates: phrase
templates, form templates, and document templates.

3.3.1 Phrase Templates

DEFINITION 3.2. PHRASE TEMPLATE: A template for the syntactic structure of a phrase
that expresses an individual requirement or a user story in natural language.

A phrase template provides a skeleton structure with placeholders, in which
Requirements Engineers fill in the placeholders in order to get well-structured,
uniform sentences that express the requirements.

Using phrase templates is a best practice when writing individual requirements in
natural language and when writing user stories.

3.3.1.1 Phrase Templates for Individual Requirements

Various phrase templates for writing individual requirements have been defined, for
example, in [ISO29148], [MWHN2009], and [Rupp2014]. The standard ISO/IEC/IEEE
29148 [ISO29148] provides a single, uniform template for individual requirements as
follows:
 [<Condition>] <Subject> <Action> <Objects> [<Restriction>].

Example: When a valid card is sensed, the system shall display the “Enter your PIN”

message on the dialog screen within 200 ms.

When formulating an action with this template, the following conventions about the
use of auxiliary verbs are frequently used in practice:

 Shall denotes a mandatory requirement.

 Should denotes a requirement that is not mandatory but strongly desired.

 May denotes a suggestion.

 Will (or using a verb in the present tense without one of the auxiliary verbs

mentioned above) denotes a factual statement that is not considered as a

requirement.

When there are no agreed meanings for auxiliary verbs in a project, or when in doubt,
definitions such as the ones given above should be made part of a requirements
specification.

Phrase template

ISO/IEC/IEEE 29148

phrase template

Using auxiliary verbs

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 35/139

EARS (Easy Approach to Requirements Syntax) [MWHN2009] provides a set of
phrase templates that are adapted to different situations as described below.

Ubiquitous requirements (must always hold): The <system name> shall <system

response>.

Event-driven requirements (triggered by an external event):

 WHEN <optional preconditions> <trigger> the <system name> shall

 <system response>.

Unwanted behavior (describing situations to be avoided):

 IF <optional preconditions> <trigger>, THEN the <system name>

 shall <system response>.

Note: Although the unwanted behavior template is similar to the event-driven one, Mavin et al. provide
a separate template for the latter, arguing that unwanted behavior (primarily due to unexpected events
in the context, such as failures, attacks, or things that nobody has thought of), is a major source of
omissions in RE.

State-driven requirements (apply only in certain states):

 WHILE <in a specific state> the <system name> shall <system response>.

Optional features (applicable only if some feature is included in the system):

 WHERE <feature is included> the <system name> shall <system response>.

In practice, sentences that combine the keywords WHEN, WHILE, and WHERE may
be needed to express complex requirements.

EARS has been designed primarily for the specification of cyber-physical systems.
However, it can also be adapted for other types of systems.

3.3.1.2 Phrase Templates for User Stories

The classic phrase template for writing user stories was introduced by Cohn
[Cohn2004]:

 As a <role> I want <requirement> so that <benefit>.

Example: “As a line manager, I want to make ad hoc inquiries to the accounting system so

that I can do financial planning for my department.”

While Cohn has designated the <benefit> part of the template as optional, it is
standard practice nowadays to specify a benefit for every user story.

Every user story should be accompanied by a set of acceptance criteria—that is,
criteria that the implementation of the user story must satisfy in order to be accepted
by the stakeholders. Acceptance criteria make a user story more concrete and less
ambiguous. This helps to avoid implementation errors due to misunderstandings.

EARS templates

Cohn’s user story

template

Acceptance criteria

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 36/139

3.3.2 Form Templates

DEFINITION 3.3. FORM TEMPLATE: A template providing a form with predefined fields to
be filled in.

Form templates are used to structure work products of medium size such as use cases.
Cockburn [Cock2001] introduced a popular form template for use cases. [Laue2002]
proposed a template for task descriptions. Table 3.2 shows a simple form template
for use cases. Each flow step may be subdivided into an action by an actor and the
response by the system.

Table 3.2 A simple form template for writing use cases

Name < A short active verb phrase>

Precondition <Condition(s) that must hold when the execution of the
use case is triggered>

Success end condition <State upon successful completion of use case>

Failed end condition <State upon failed execution of use case>

Primary actor <Actor name>

Other actors <List of other actors involved, if any>

Trigger <Event that initiates the execution of the use case>

Normal flow <Description of the main success scenario in a
sequence of steps:

 <step 1> <action 1>

 <step 2> <action 2>

 ...

 <step n> <action n> ... >

Alternate flows <Description of alternative or exceptional steps, with
references to the corresponding steps in the normal
flow>

Extensions <Extensions to the normal flow (if there are any), with
references to the extended steps in the normal flow>

Related information <Optional field for further information, such as
performance, frequency, relationship to other use
cases, etc.>

Form templates are also useful for writing quality requirements in a measurable form
[Gilb1988]. Table 3.2 provides a simple form template for measurable quality
requirements, along with an example.

Form template

Use case template

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 37/139

Table 3.3 A form template for specifying measurable quality requirements

Template Example

ID <Number of
requirement>

R137.2

Goal <Qualitatively stated
goal>

Confirm room reservations immediately

Scale <Scale for measuring
the requirement>

Elapsed time in seconds (ratio scale)

Meter <Procedure for
measuring the
requirement>

Timestamping the moments when the
user hits the “Reserve” button and when
the app has displayed the confirmation.
Measuring the time difference.

Minimum <Minimum acceptable
quality to be achieved>

Less than 5 s in at least 95% of all cases

OK range <Value range that is OK
and is aimed at>

Between 0.5 and 3 s in more than 98% of
all cases

Desired <Quality achieved in
the best possible case>

Less than 0.5 s in 100% of all cases

3.3.3 Document Templates

DEFINITION 3.4. DOCUMENT TEMPLATE: A template providing a predefined skeleton
structure for a document.

Document templates help to systematically structure requirements documents—for
example, a system requirements specification. RE document templates may be found
in standards, for example in [ISO29148]. The Volere template by Robertson and
Robertson [RoRo2012], [Vole2020] is also popular in practice. When a requirements
specification is included in the set of work products that a customer has ordered and
will pay for, that customer may prescribe the use of document templates supplied by
the customer. In

Figure 3.1, we show an example of a simple document template for a system
requirements specification.

3.3.4 Advantages and Disadvantages

Using templates when writing RE work products in natural language has major
advantages. Templates provide a clear, re-usable structure for work products, make
them look uniform, and thus improve the readability of the work products. Templates
also help you to capture the most relevant information and make fewer errors of
omission. On the other hand, there is a potential pitfall when Requirements Engineers
use templates mechanically, focusing on the syntactic structure rather than on
content, neglecting everything that does not fit the template.

Measurable quality

requirement template

Document template

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 38/139

Part I: Introduction

1. System purpose

2. Scope of system development

3. Stakeholders

Part II: System overview

4. System vision and goals

5. System context and boundary

6. Overall system structure

7. User characteristics

Part III: System requirements

 Organized hierarchically according to system structure, using a hierarchical
numbering scheme for requirements

 Per subsystem/component:

• Functional requirements (structure and data, function and flow, state
and behavior)

• Quality requirements

• Constraints

• Interfaces

References

Appendices

 Glossary (if not managed as a work product of its own)

 Assumptions and dependencies

Figure 3.1 A simple system requirements specification template

Using templates when writing RE work products in natural language improves the
quality of the work products provided that the templates are not misused as just a
syntactic exercise.

3.4 Model-Based Work Products

Requirements formulated in natural language can easily be read by people provided
they can speak the language. Natural language suffers from ambiguity due to the
imprecision of semantics of words, phrases, and sentences [Davi1993]. This
imprecision may lead to confusion and omissions in requirements. When you read
textual requirements, you will try to interpret them in your own way. We often try to
imagine these requirements in our mind. When the number of requirements is
manageable, it is possible to maintain insight and an overview of the textual
requirements. When the number of textual requirements becomes “too big,” we lose
the overview. That limit is different for each person. The number of textual
requirements is not the only reason for losing insight and overview. The complexity
of the requirements, the relationship between the requirements, and abstraction of
the requirements also contribute to this. You may have to read the requirements
formulated in natural language several times before you get a correct and complete
picture that the system must comply with. We have a limited ability to process
requirements in natural language.

Sample document

template

Requirements in natural

language have their

limitations

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 39/139

Figure 3.2 Textual requirements versus modeled requirements

A model is an abstract representation of an existing part of reality or a part of reality
to be created. Displaying the requirements (also) with a model (or picture) will
contribute to readers grasping the requirements. Such diagrammatic representation
of a model is called a diagram.

The diagram in Figure 3.2 shows at a glance what the system must provide, but only
if you have mastered the modeling language. It is evident that if you do not understand
the diagram, in this case a UML activity diagram, the picture will not contribute to a
better understanding of the requirements.

In the next section (3.4.1), the concept of a requirements model is explained. Modeling
of business requirements and goals is explained in Section 3.4.5.1. An important
method for describing the demarcation of a system is the context model. Examples of
the context are depicted in Section 3.4.2. Sections 3.4.3 to 3.4.5 give a number of
examples of modeling languages that are often used in systems engineering practice.

3.4.1 The Role of Models in Requirements Engineering

Like any language, a modeling language consists of grammatical rules and a
description of the meaning of the language constructs, see Section 3.4.1.1. Although a
model is a visual representation of reality, the language rules are important in order
to understand the model and the nuances in the model.

It is not always efficient or effective to summarize the requirements in a model. By
understanding the properties of a model, we can better determine when we can apply
which model, see Section 3.4.1.2.

Just as natural language has advantages and disadvantages for expressing the
requirements, so do models. If we observe these facts in applying a model, we can
better determine the added value of applying the "correct" model. This is discussed
in Section 3.4.1.3.

A model is an abstract

representation of reality

Modeling requirements

contributes to

maintaining an overview

of and insight into the

requirements

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 40/139

Many models have already been standardized and are used in various fields of
application, see Section 3.4.1.4. Consider, for example, the construction of a house,
where an architect uses a standardized model to describe the house. Another example
is electronics, where the drawing of electronic diagrams is standardized so that
professionals can understand, calculate, and realize the electronics.

To determine whether a diagram is applied correctly, we can validate the quality
criteria of a diagram. These criteria are described in Section 3.4.1.5.

3.4.1.1 Syntax and Semantics

If you think about a natural language, for example your native language, it is defined
by its grammar and semantics.

The grammar describes the elements (words and sentences) and the rules that the
language must obey. In a modeling language, this is called the syntax, see Figure 3.3.
The syntax describes which notation elements (symbols) are used in the language. It
also describes how these notation elements can be used in combination.

Figure 3.3 Modeling language syntax and semantics

The semantics defines the meaning of the notation elements and defines the meaning
of the combination of elements. Understanding the meaning of the notation elements
is fundamental for preventing the risk of the model being misinterpreted.

3.4.1.2 Properties of a Model

A requirements model is a conceptual model that depicts the requirements for the
system to be developed. A model is also used to represent the current situation to
understand, analyze, and explore the present problems. In this context, conceptual
means that reality is reduced to its essence. A model has a high level of abstraction
and reduces reality to what is relevant at this generic level.

A modeling language

consists of syntax and

semantics

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 41/139

A conceptual modeling language can be standardized (internationally) and is then
referred to as a formal modeling language. An example of this is the widespread and
frequently applied modeling language UML (Unified Modeling Language).

A model has a number of properties that are explored further in the following
sections:

 A model is made for a specific purpose.

 A model gives a representation of reality.

 A model is used to reduce information so that we can better understand

reality or focus on part of the reality.

A model is an abstract representation of an existing part of reality or a part of reality
to be created. Reality can be presented from two angles, the descriptive and the
prescriptive.

A descriptive model shows the current reality and reflects the requirements that are
met. If no descriptive model is available yet, such a model is the result of the analysis
of the current situation. Such a model is also called the original.

A prescriptive model indicates what future reality is expected or required. If a
descriptive model exists for the given situation, then the prescriptive model can be
derived from the original by indicating which requirements will be new, changed, or
are no longer needed. It describes the ultimate situation desired.

Reality can be complex. If we apply “too many” details, a model can be hard to grasp.
This complex reality can be simplified by reducing the amount of information in the
model. In a model, we can omit irrelevant information. Reducing the amount of
information can give us a better understanding of reality and allow us to understand
the essence of this reality more easily. Based on the intended purpose (first property)
for which the model is applied, only the relevant information is displayed in the
model.

Please note, if "too much" information is reduced, a clouded or incorrect image of
reality may arise. Thus, careful consideration should be given to how much of the
information can be reduced without distorting reality.

There are several ways to reduce information:

 By compression or aggregation

Aggregating information is a way to make information more abstract. The

information is stripped of irrelevant details and is therefore more compact.

The information is, as it were, condensed.

 By selection

By selecting only the relevant information, and not everything, it is possible

to indicate what the subject under consideration is. The focus is on a specific

part or number of parts of the total.

Both ways of reducing information can also be applied together.

A model is a representation of reality and each model represents certain aspects of
reality. For example, a construction drawing shows the breakdown of the space in a
building and an electrical diagram shows the wiring of the electrical circuit. Both
models represent the building for a specific purpose. A model is made for a specific
purpose in a specific context. In the example above, the context is the design and/or
realization of a building. The various construction drawings represent information
about a specific aspect of the building. This makes it immediately clear that a specific
model can be used only if it fits the purpose for which the model was made.

A model is an abstract

representation of reality

A model represents the

reality in a descriptive or

prescriptive way

A model reduces

information

A model suits a specific

purpose

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 42/139

3.4.1.3 Advantages and Disadvantages of Modeling Requirements

Compared with natural languages, models have the following advantages, among
others:

 The elements and their connections are easier to understand and to

remember.

A picture tells more than a thousand words. A picture, and also a model, can

be easier to grasp and to remember. Note that a model is not self-

explanatory and needs extra information—i.e., a legend, examples, scenarios,

etc.

 The focus on a single aspect reduces the cognitive load needed to

understand the requirements modeled.

Because a model has a specific purpose and a reduced amount of

information, understanding the reality modeled can require less effort.

 Requirements modeling languages have a restricted syntax that reduces

possible ambiguities and omissions.

Because the modeling language (syntax and semantics) is simpler—i.e.,

limited number of notation elements and stricter language rules compared

with natural language—the risk of confusion and omissions is smaller.

 Higher potential for automated analysis and processing of requirements.

Because a modeling language is more formal (limited number of notation

elements and stricter language rules) than a natural language, it lends itself

better to automating the analysis or processing of requirements.

Despite the great advantages for visualizing requirements with models, models also
have their limitations.

 Keeping models that focus on different aspects consistent with each other is

challenging.

If multiple models are used to describe the requirements, it is important to

keep these models consistent with each other. This requires a lot of

discipline and coordination between the models.

 Information from different models needs to be integrated for causal

understanding.

If multiple models are used, all models must be understood to enable a good

understanding of the requirements.

 Models focus primarily on functional requirements.

The models for describing quality requirements and constraints are limited

if not lacking in specific context. These types of requirements should then be

supplied in natural language together with the models—for example, as a

separate work product.

 The restricted syntax of a graphic modeling language implies that not every

relevant item of information can be expressed in a model.

Because a model is made for a specific purpose and context, it is not always

possible to record all requirements in the model or in multiple models.

Requirements that cannot be expressed in models are added to the model as

natural language requirements or as a separate work product.

Advantages of models

Disadvantages of

models

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 43/139

Therefore, requirements models should always be accompanied by natural language
[Davi1995].

3.4.1.4 Application of Requirements Models

As indicated in the previous sections, there are common models for various contexts.
For example, in architecture, you have construction drawings, piping diagrams,
electrical diagrams, etc. to express the specifications of a building. In other contexts—
for example, software development—there are modeling languages that are useful in
these types of context. An important aspect in applying models is to use models that
are common in the context or that have been specially developed for a specific
context.

Many modeling languages—for example, UML [OMG2017] or BPMN [OMG2013]—
have been standardized. When requirements are specified in a non-standard
modeling language, the syntax and semantics of the language should be explained to
the reader—for example, via a legend.

Models are used to describe the requirements from a certain perspective. In system
development, functional requirements are categorized in the following perspectives
(see also Section 3.1.4):

 Structure and data

Models that focus on the static structural properties of a system or a domain

 Function and flow

Models that focus on the sequence of actions required to produce the

required results from given inputs or the actions required to execute a

(business) process, including the flow of control and data between the

actions and who is responsible for which action

 State and behavior

Models that focus on the behavior of a system or the life cycle of business

objects in terms of state-dependent reactions to events or the dynamics of

component interaction

The nature of the system being modified or built gives direction to the models to be
used. For example, if the nature of the system is to process information and
relationships, then it is expected that there are quite a lot of functional requirements
that describe this information and these relationships. As a result, we use a matching
modeling language that lends itself to modeling data and its structure.

Naturally, a system will consist of a combination of the above perspectives. It follows
that a system needs to be modeled from multiple perspectives. Sections 3.4.3 to 3.4.5
elaborate the different models for each perspective in more detail.

Before the requirements are elicited and documented—for example with models—
an inventory is taken of goals and context. These can also be modeled, see Sections
3.4.5.1 respectively 3.4.2.

Applying models helps us mainly in the following ways:

 Specifying (primarily functional) requirements in part or even completely, as

a means of replacing textually represented requirements

 Decomposing a complex reality into well-defined and complementing

aspects; each aspect being represented by a specific model, helping us to

grasp the complexity of the reality

The nature of a system

helps in the selection of

the appropriate model

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 44/139

 Paraphrasing textually represented requirements in order to improve their

comprehensibility, in particular with respect to relationships between them

 Validating textually represented requirements with the goal of uncovering

omissions, ambiguities, and inconsistencies

Modeling the requirements also helps with structuring and analyzing knowledge. You
can use diagrams to structure your own thoughts to get a better understanding of the
system and its context.

3.4.1.5 Quality Aspects of a Requirements Model

This is a supplementary section for which there will be no questions in the CPRE
Foundation level exam.

A substantial part of the requirements models are diagrams or graphical
representations. The quality of the requirements model is determined by the quality
of the individual diagrams and their mutual relationships. In turn, the quality of the
individual diagrams is determined by the quality of the model elements within the
diagrams. The quality of the requirements models and model elements can be
assessed against three criteria [LiSS1994]:

1. Syntactic quality

2. Semantic quality

3. Pragmatic quality

The syntactic quality expresses the extent to which a single model element (graphical
or textual), requirements diagram, or requirements model complies with the
syntactic specifications. If, for example, a model that describes the requirements as a
class model contains modeling elements that are not part of the syntax, or model
elements are misused, then this will decrease the syntactic quality of the model. A
stakeholder of this model—for example, a tester—might misinterpret the
information that is represented by the model. This might eventually lead to
inappropriate test cases.

Requirements modeling tools provide facilities for checking the syntactic quality of
the models.

The semantic quality expresses the extent to which a single model element (graphical
or textual), the requirements diagram, or the requirements model correctly and
completely represents the facts.

Just like in natural language, semantics gives meaning to the words. If a term can have
different meanings or there are several terms that mean the same thing, this can lead
to miscommunication. The same applies to the semantics of modeling elements. If the
modeling elements are misinterpreted or applied incorrectly, the model may be
misinterpreted.

The pragmatic quality expresses the extent to which a single model element
(graphical or textual), the requirements diagram, or the requirements model is
suitable for the intended use—that is, whether the degree of detail and abstraction
level is appropriate for the intended use and whether the appropriate model is
selected with respect to the domain or context. This can be assessed if the purpose
and the stakeholders of the diagram are known. Intermediate versions of the model
can be submitted to the stakeholders interested to validate whether the diagrams fit
their purpose.

The quality of a model is

determined by three

criteria

Syntactic quality

Semantic quality

Pragmatic quality

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 45/139

During validation of the requirements, the quality of the modeling diagrams used is
assessed to make sure that these diagrams fit their intended purpose and usefulness.

3.4.1.6 Best of Both Worlds

As explained in the previous section, requirements that are expressed in textual or
visual/graphical form (i.e., via requirements models) have their advantages and
disadvantages. By using both textual and graphic representations of the
requirements, we can harness the power and benefits of both forms of representation.

Amending a model with textual requirements adds more meaning to the model.
Another useful combination is that we can link quality requirements and constraints
to a model or specific modeling element. This provides a more complete picture of the
specific requirements.

Using models can also support the textual requirements. Adding models and images
to the textual requirements supports these models for a better understanding and
overview.

3.4.2 Modeling System Context

Chapter 2, Principle 4 introduces the notion that requirements never come in
isolation and that the system context, such as existing systems, processes, and users
need to be considered when defining the requirements for the new or changed
system.

Context models specify the structural embedding of the system in its environment,
with its interactions to the users of the system as well as to other new or existing
systems within the relevant context. A context model is not a graphical description of
the requirements but is used to reveal some of the sources of the requirements. Figure
3.4 provides an abstract example of a system and its environment, with its interfaces
to the users of the system and its interfaces to other systems. Thus, context diagrams
help to identify user interfaces as well as system interfaces. If the system interacts
with users, the user interfaces must be specified in a later step during RE. If the system
interacts with other systems, the interfaces to these systems must be defined in more
detail in a later step. Interfaces to other systems may already exist or may need to be
developed or modified.

Figure 3.4 A system in its context

Document requirements

in natural language and

models to benefit from

the strengths of both

approaches

Context models help to

understand the context

and boundaries of a

system

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 46/139

Even if there is no standardized modeling language for context models, context
models are frequently represented by:

 Data flow diagrams from structured analysis [DeMa1978]

 UML use case diagrams [OMG2017]

Note: the UML use case model consists of two elements; the use case

diagram (see Figure 3.6) and the use case specification (Section 3.4.2.2). This

chapter focuses on modeling with the use case diagrams.

 Tailored box-and-line diagrams [Glin2019]

In the systems engineering domain, SysML block definition diagrams [OMG2018] can
be adapted to express context models by using stereotyped blocks for the system and
the actors.

In the next two subsections, we introduce the notation of data flow diagrams (DFD)
and UML use case diagrams to model the context of a system. These two examples do
not describe the complete context but emphasize the context from a specific
viewpoint.

3.4.2.1 Modeling the System Context with a Data Flow Diagram (DFD)

The system context can be viewed from different perspectives. The structured
analysis of systems [DeMa1978] talks about the context diagram. This diagram is a
special data flow diagram (DFD) where the system is represented by one process (the
system). Figure 3.5 shows an example of a context diagram.

Figure 3.5 Example of a context diagram using a DFD

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 47/139

The system is placed centrally in the model. It has a clear name so that the readers
know which system is being considered.

The rectangles around the system are terminators: customer, printer, and financial
administration. A terminator that provides information or services to the system is
called a source. A terminator that takes information or services from the system is
called a sink. A terminator can take either role depending on the data provided or
retrieved, such as the customer in the example above.

The arrows in the example show how the information from the terminators flows into
the system (source) and from the system to the terminators (sinks). The arrows are
given a logical name that describes what information is transferred. Irrelevant details
are omitted at the context diagram level. The information flow between the customer
and the system contains, for example, customer data. What information (name, date
of birth, email address, telephone number, delivery address, billing address, etc.)
makes up the customer data does not have to be relevant yet for this level of
abstraction.

The flow of information can consist of tangible (materials) and intangible
(information) objects. Also, at this conceptual level, there is no reference (yet) to
how—email, website, form, etc.—the information is provided.

Adding extra details to the context diagram can make it clearer to the stakeholders
involved and may help to improve the shared understanding. These details need to be
worked out for each individual situation.

Using a data flow diagram to model the context of a system provides some insights
into the interactions of the system with its environment, for example:

 The interfaces to people, departments, organizations, and other systems in

the environment

 The (tangible and intangible) objects that the system receives from the

environment

 The (tangible and intangible) objects that is produced by the system and is

delivered to the environment

A data flow diagram indicates a clear boundary between the system and its
environment. The relevant users and systems of the environment are identified
during elicitation of requirements (Section 4.1). DFD context diagrams can help to
structure the context to reach a shared understanding of the system context and the
system boundary.

3.4.2.2 Modeling the System Context with a UML Use Case Diagram

Another view of the context of a system can be reached from a functional perspective.
The UML use case diagram is a common approach for modeling the functional aspects
of a system and the system boundaries, along with the system’s interactions with
users and other systems. Use cases provide an easy way to systematically describe
the various functions within the defined scope from a user perspective. This is
different to DFD context diagrams, where the system is represented as a big black box.

Use cases were first proposed as a method for documenting the functions of a system
in [Jaco1992]. The UML use cases consists of use case diagrams with associated
textual use case specifications (see Section 3.3.2). A use case specification specifies
each use case in detail by, for example, describing the possible activities of the use
case, its processing logic, and preconditions and postconditions of the execution of
the use case. The specification of use cases is essentially textual—for example, via use
case templates as recommended in [Cock2001].

A DFD gives insights into

the interface of the

system with its context

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 48/139

As mentioned, a UML use case diagram shows the functions (use cases) from the point
of view of the direct users and other systems that interact with the system under
consideration. The name of the use case is often composed of a verb and a noun. This
gives a brief description of the function offered by the system, as shown by the
example in Figure 3.6.

The actors are the direct users or systems that interact with the system under
consideration. The actor (user or system) that starts the use case receives the benefit
that the use case delivers (e.g., showing the status of an order to the customer). The
association connects the actor with the relevant use case but it does not document
any direction or data flow (as is done in DFDs); it expresses only that the actor
receives the benefit from the use case.

Figure 3.6 Example of a context diagram using a use case diagram

A UML use case diagram describes the functionality that the system offers to its
environment. The separation between the functionality in the system and the actors
in the context is visualized with the system boundary (rectangle around the use cases,
e.g., “book ordering system”). Use case diagrams support sharpening of the system
boundary and checking whether the functional scope of the system at a high level is
covered.

Each use case also includes a detailed use case specification, documenting the
preconditions, trigger, actions, postconditions, actors, and so forth. Use cases are
usually described using a template (Section 3.3). If the scenarios of a use case become
complex or large, the recommendation is to visualize the scenarios with UML activity
diagrams, see Section 3.4.4.1. The detailed specification of use cases is not part of
context modeling and can be elaborated at a later time, when this information
becomes relevant.

3.4.3 Modeling Structure and Data

For functional requirements from the perspective of business objects (see Section
3.1.4), different data models are available. A (business) object can be a tangible or
intangible object, such as a bicycle, pedal, bicycle bell, but also a training request, a
shopping basket with digital products, and so on. A (business) object is "something"
in the real world. Some (or maybe all) of these (business) objects are used by the
system under consideration. The system uses these objects as input to process, to
persist, and/or to deliver output. Data models are used to describe the (business)
objects that must be known by the system. These kinds of diagrams model the object,
attributes of the object, and the relationships between objects. For the sake of
simplicity, we refer to modeling structure and data—these, however, represents
information structures between (business) objects in the real world.

A use case diagram

gives insights into the

functionality provided to

the direct users in the

context

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 49/139

A number of common models for depicting structure and data are:

 Entity relationship diagrams (ERD) [Chen1976]

 UML class diagrams [OMG2017]

 SysML Block Definition Diagrams [OMG2018]

 Building information models (BIM) [ISO19650]: these model the elements

required to plan, build, and manage buildings and other construction

elements. The details of models outside the system domain are not covered

by this handbook.

To explain the concept of modeling structure and data, this chapter uses the UML class
diagram as an example. UML, short for Unified Modeling Language, consists of an
integrated set of diagrams. This set of diagrams is a collection of best engineering
practices and has proven successful in modeling complex and large systems. UML was
designed by Grady Booch, James Rumbaugh, and Ivar Jacobson in the 1990s and it has
been a standardized modeling language since 1997.

If more depth or a different model is desired, read the literature referred to and
practice with the desired modeling language.

3.4.3.1 Modeling Structure and Data with UML Class Diagrams

UML is a collection of different models that can be used to describe a system. One of
these models is the class diagram. A class diagram depicts a set of classes and
associations between them. We discuss only the common and simple notation
elements of this model. If more depth is desired, we refer to the literature or the CPRE
Advanced Level Requirements Modeling.

In the overview below you will find the most common notation elements.

Figure 3.7 Subset of the modeling elements of UML class diagrams

Common models for

depicting structure and

data

Most common notation

elements of UML class

diagrams

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 50/139

In a class model, you will find the concepts and terms that are relevant in the domain.
These concepts include a clear definition that is included in the glossary. With the use
of data models, the glossary is extended with information about the structure and
coherence of the terms and concepts. A clear definition and coherence of the terms
used prevents miscommunication about the matter under consideration.

Figure 3.8 shows a simplified model of the book ordering system (see examples of the
context in Section 3.4.2). The static information that the system needs to perform its
functionality—ordering a book—is modeled.

A customer orders a book and hence information is persisted for the classes Customer,
Order, and Book. A customer can place an order and therefore a relationship
(association) exists between the Customer and the Order. A customer can place
multiple orders over time and he/she only becomes a customer if he/she places an
order. This information determines the multiplicity: 1 customer places 1 or more
orders.

The fact that a customer can order a book means that there is also a relationship
between the classes Order and Book. To keep the example simple, here, the customer
can order only one book at a time. Also, an order must contain at least one book. An
order that has no book is not an order.

In the class Book, the attribute inStock is also maintained. Information such as ”if the
stock is not sufficient to fulfill the order, then a print job is sent to the printer” cannot
be modeled. This is a type of information that cannot be modeled in a class diagram
because it describes a certain functionality of the system. This information is part of
the requirements and should be documented in another work product. It can be
added as a textual requirement that accompanies the class diagram, or be modeled
with another diagram—for example, a UML activity diagram (see Section 3.4.4.1).

Figure 3.8 Example of a simple UML class diagram

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 51/139

3.4.4 Modeling Function and Flow

Function and flow describe how the (sub)system shall transform input into output.
We can visualize this type of requirement with models that depict function and flow.

Unlike modeling data, which essentially needs only one diagram type, function and
flow can be viewed from different angles. Depending on the needs of the stakeholders
to take the next step in the development process, more than one model might be
needed to document the requirements about function and flow.

Some common models for depicting function and flow are:

 Business Process Modeling Notation (BPMN) [OMG2013]

These process models are used to describe business processes or technical
processes. BPMN is frequently used to express business process models.

 UML use case diagram [OMG2017]

See Section 3.4.2.2.

 UML activity diagram [OMG2017]

See Section 3.4.4.1.

 UML sequence diagram [OMG2017]

See Section 3.4.5.1.

 Data flow diagram [DeMa1978]

See Section 3.4.2.1.

 Domain story models [HoSch2020]

These models specify visual stories about how actors interact with devices,
artifacts, and other items in a domain, typically using domain-specific
symbols. They are a means for understanding the application domain in
which a system will operate.

To explain the concept of modeling function and flow, we limit this section to a few
examples of UML diagrams. If more depth or a different model is desired, read the
literature referred to and practice with the relevant modeling language.

3.4.4.1 UML Activity Diagram

UML activity models are used to specify system functions. They provide elements for
modeling actions and the control flow between actions. Activity diagrams can also
express who is responsible for which action. Advanced modeling elements (not
covered by this handbook) provide the means for modeling data flow.

A UML activity diagram expresses the control flow of activities of a (sub)system. Flow
thinking comes from visualizing program code with flow charts (according to
[DIN66001], [ISO5807]). This helped programmers to conceive and understand
complex structures and flows in programs. With the introduction of UML [OMG2017],
a model has been introduced for visualizing activities and actions from a functional
perspective.

Common models for

depicting function and

flow

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 52/139

In the overview below you will find the basic notation elements.

Figure 3.9 Basic notation elements of the UML activity diagram

With this set of basic notation elements, you can set up a simple sequential activity
diagram. If more control is required, the model can be extended with decisions and
parallel flows of activities using the notation elements below.

Figure 3.10 Decisions and parallel flows in a UML activity diagram

Activity diagrams can be used to specify the processing logic of use case scenarios in
detail (see Section 3.3.2). Activity diagrams are created to visualize the scenarios,
which are processes with activities and processing logic. As long as the diagram
remains understandable, the main scenario can be modeled jointly with the
alternative scenarios and the exception scenarios as part of the same diagram.

Figure 3.11 gives a simple example of the book ordering system. This simplified flow
of action starts when the customer sends in their order. First, the Order and the
Customer information are validated to determine whether all (necessary) information
is supplied. If either the Order or the Customer information is invalid (incorrect or
insufficient), then a notification is sent to the customer and the order process is
canceled. The basic scenario is that the Order and Customer information are valid. The
scenario that the Order or Customer information is invalid is called an exceptional flow
and handles a functional faulty condition in the process.

Basic notation elements

of UML activity

diagrams

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 53/139

If both Order and Customer information are correct, then the stock is checked. If there
is a sufficient number of products in stock, the Order is picked and sent to the
Customer. An alternative flow is started if there are insufficient products in stock. A
print job request is sent to the Printer and a notification for a redelivery is sent to the
Customer.

Within the book ordering system, there are also other flows that are separated from
the order and delivery process. For example, the payment, redelivery, and invoice
processes have separate flows to allow a clear separation of concerns. If, for example,
the decision is taken to no longer keep any products in stock, then the order and
delivery process still applies. If changes are needed in this flow, these changes may
not affect the other flows. This decomposition of functionality helps to keep things
simple and clear.

Figure 3.11 Example of a UML activity diagram

3.4.5 Modeling State and Behavior

Functional requirements that describe the behavior, states, and transitions of a
(sub)system or that of a business object are requirements in the behavioral
perspective. An example of a system state is On, Standby, or Off. A business object can
have a life cycle that goes through a number of prescribed states. For example, a
business object Order can be in the following states: Placed, Validated, Paid, Shipped,
and Completed.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 54/139

A technique widely used to describe the behavior of a system is statecharts
[Hare1988]. Statecharts are state machines with states that are decomposed
hierarchically and/or orthogonally. State machines, including statecharts, can be
expressed in the UML modeling language [OMG2017] with state machine diagrams
(also called state diagrams).

State diagrams describe state machines that are finite. This means that these systems
eventually reach a final state. A state diagram shows the states that the system or an
object can take. It also indicates how to switch state—that is, the state transition. A
system does little by itself. Switching the state requires a trigger from the system or
from the environment of the system.

Common models for representing behavior and states include:

 Statecharts [Hare1988]

 UML state diagram [OMG2017]

To explain the concept of modeling behavior and states, this chapter uses the UML
state diagram as an example. If more depth or a different model is desired, read the
literature referred to and practice with the relevant modeling language.

In the overview below you will find the basic notation elements.

Figure 3.12 Basic notation elements of the UML state diagram

As discussed at the beginning of the section, a state diagram can clarify the states an
object can take. We see here an opportunity to visualize additional (and partly
redundant) information of an object. Imagine that you order a book on a website and
you want to track the status of your order. An order is used in the real world and is
modeled as a business object in a class diagram (see Figure 3.8) with, most likely, an
attribute status. The class diagram indicates that the attribute status can assume a
limited number of values, such as Validated, Paid, Delivered, Canceled, and so on. The
class diagram does not describe the order of possible status changes. A class diagram
does not describe the behavior of the system in a certain "status" either. This can be
made clear with a UML state diagram—for example, that an offered order cannot go
directly to the status Delivered without the customer having paid for the order.

Figure 3.13 gives an example of a state diagram of the book ordering system. In the
class diagram (Figure 3.8) of the book ordering system, an object Order is modeled.
This object has an attribute status that can have a limited number of values. These
values are listed and explained in the class diagram. What a class diagram does not
describe is the sequence in which the order is processed. A state diagram visualizes
the states and transitions between the states, making it clear what the sequence of
the order status is. The state diagram shows, for example, that the order cannot be
sent before it is completely picked (transition between the states Picked and Sent).

Basic notation elements

of UML state diagrams

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 55/139

Also, if the order is in the state Sent, the next state can only be Paid. A transition from
Sent to Handled is not possible. This diagram also makes clear that payment happens
after the book is sent. You can ask the stakeholders whether this is what they need or
have requested.

A transition may direct to the same status. This situation is visible in the state Picked.
Each time the order is not picked to completion, it stays in the same state to prevent
it from sending an incomplete order. Only when the order is completely picked is it
then sent to the customer.

Figure 3.13 Example of a UML state diagram

A few months after the release of the book ordering system, customers complained
that they did not have the ability to cancel an order. It was agreed that a customer
could cancel the order in each state of the order process. Modeling this new
requirement means that a transition to Canceled is needed from each state. This might
make the diagram difficult to read. Adding a textual requirement to describe this
behavior might be a way to keep the model simple for the audience.

3.4.5.1 UML Sequence Diagram

The following UML diagram is supplementary and will not be questioned in the CPRE
Foundation level exam.

The UML sequence diagram is used to depict the interaction between communication
partners and to model the dynamic aspect of systems. The communication partners
are actors, systems, components, and/or objects within a system.

The interaction displays the sequence of messages (a scenario) between these
communication partners. The interaction that takes place between the
communication partners realizes the purpose of a scenario, respectively (a part) of a
use case.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 56/139

In the overview below you will find the basic notation elements.

Figure 3.14 Basic notation elements of the UML sequence diagram

A lifeline in a scenario depicts the role in the scenario, meaning the instance of an
actor. When sequence diagrams are modeled, the instance name of an actor or object
is often omitted. The roles that participate in the communication interact with each
other by sending messages. There are two types of messages that are used in the
interaction.

Figure 3.15 Basic notation elements of messaging in the UML sequence diagram

A message can also be sent from or to objects outside the scenario. This is represented
as a filled-in circle. The sender or receiver of these kinds of messages may be
unknown.

Figure 3.16 Messages from and to an object outside the scenario

Basic notation elements

of UML sequence

diagrams

Basic notation elements

of messaging in UML

sequence diagrams

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 57/139

Figure 3.17 shows a model of the scenario in which a customer orders a book and that
specific book is out of stock. The Customer asks to place an Order. If the Order is
invalid, a notification that the Order is canceled is returned. If the Order is valid, the
stock is checked and if a book is out of stock, a print job is sent to the Printer. This is
an asynchronous message because it might take some time to print the book. A
notification is sent to the Customer that the book is out of stock and will be
redelivered. The Order is deactivated until the book is delivered by the Printer.

When the book is received from the Printer, the Order object is activated again. The
order is picked and sent to the Customer. This completes the Order and a last
notification of the status is sent to the Customer.

Figure 3.17 Example of a UML sequence diagram

3.4.6 Modeling Goals

Business requirements describe a business goal or need. They describe the end result
that the solution must meet and with which the (business) problem is solved, see
Chapter 2, Principle 5. To ensure that the focus is on solving the problem and that the
effort focuses on adding value, goals are carefully described. In Requirements
Engineering, there are several ways to document goals. The most common one is the
use of natural language (Section 3.2) or templates (Section 3.3). Template-based
documentation forms can be found, for instance, in [Pich2010], [Pohl2010], or
[RoRo2012].

There are also some model-based notations for documenting goals. The easiest and
most common notation is an AND/OR tree [AnPC1994]. AND/OR trees allow us to
document goals at different levels of detail and to link subgoals with goals using AND
and OR relationships. An AND relationship means that all subgoals need to be fulfilled
to fulfill the goal. An OR relationship is used to express that at least one of the subgoals
needs to be fulfilled to fulfill the goal.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 58/139

More academic modeling approaches for goals can be found in:

 Goal-oriented requirements language (GRL) [GRL2020]

This is a language that supports goal-oriented modeling and reasoning of

requirements, especially for dealing with non-functional requirements.

 Knowledge acquisition in automated specification (KAOS) [vLam2009]

KAOS is a methodology that contains goal modeling. This enables analysts to

build requirements models and to derive requirements documents from

KAOS goal models.

Documenting goals (in textual or graphical form) is an important starting point for
eliciting requirements, referring the requirements to their rationale, and identifying
sources—like stakeholders—of the requirements, etc.

3.5 Glossaries
Glossaries are a core means of establishing shared understanding of the terminology
used when developing a system: they help avoid people involved as stakeholders or
developers using and interpreting the same terms in different ways.

A good glossary contains definitions for all terms that are relevant for the system, be
they context-specific terms or everyday terms that are used with a special meaning in
the context of the system to be developed. A glossary should also define all
abbreviations and acronyms used. If there are synonyms (that is, different terms
denoting the same thing), they should be marked as such. Homonyms (that is,
identical terms that denote different things) should be avoided or at least marked as
such in the glossary.

There are a couple of rules that guide the creation, use, and maintenance of the
glossary in a system development project.

1. Creation and maintenance. To ensure that the terminology defined in the glossary
is consistent and always up to date, it is vital that the glossary is managed and
maintained centrally over the entire course of a project, with one person or a
small group being responsible for the glossary. When defining terms, it is
important that the stakeholders are involved and agree on the terminology.

2. Usage. In order to get the full benefit of a glossary, its use must be mandatory.
Work products should be checked for proper glossary usage. Obviously, this
means that everybody involved in a project must have read access to the
glossary.

When an organization develops related systems in multiple projects, it makes sense
to create a glossary at the enterprise level in order to achieve consistent terminology
across projects.

Creating, maintaining, and using a glossary consistently avoids errors and
misunderstandings concerning the terminology used. Working with glossaries is a
standard best practice in RE.

Why glossaries

Glossary content

Glossary rules

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 59/139

3.6 Requirements Documentation Structures

It is not sufficient to work with requirements at the level of individual requirements.
Requirements must be collated and grouped in suitable work products, be they
explicit requirements documents or other RE-related documentation structures
(such as a product backlog).

Document templates (see Section 3.3.3) may be used to organize such documents
with a well-defined structure in order to create a consistent and maintainable
collection of requirements. Document templates are available in literature
[Vole2020], [RoRo2012] and in standards [ISO29148]. Templates may also be reused
from previous, similar projects or may be imposed by a customer. An organization
may also decide to create a document template as an internal standard.

A requirements document may also contain additional information and
explanations—for example, a glossary, acceptance criteria, project information, or
characteristics of the technical implementation.

Frequently used requirements documents are:

 Stakeholder requirements specification: the stakeholders’ desires and needs

that shall be satisfied by building a system, seen from the stakeholders’

perspective. When a customer writes a stakeholder requirements

specification, it is called a customer requirements specification.

 User requirements specification: a subset of a stakeholder requirements

specification, covering only requirements of stakeholders who are

prospective users of a system.

 System requirements specification: the requirements for a system to be built

and its context so that it satisfies its stakeholders’ desires and needs.

 Business requirements specification: the business goals, objectives, and needs

of an organization that shall be achieved by employing a system (or a

collection of systems).

 Vision document: a conceptual imagination of a future system, describing its

key characteristics and how it will create value for its users.

Frequently used alternative documentation structures are:

 Product backlog: a prioritized list of work items, covering all requirements

that are needed and known for the product

 Sprint backlog: a selected subset of a product backlog with work items that

will be realized in the next iteration

 Story map: a visual two-dimensional organization of user stories in a product

backlog with respect to time and content

There is no standard or universal requirements document or documentation
structure. Accordingly, documents or documentation structures should not be reused
from previous projects without reflection. The actual choice depends on several
factors, for example:

 The development process chosen

 The project type and domain (for example, tailor-made solution, product

development, or standard product customizing)

Documents and

documentation

structures

Document templates

Frequently used

documents

Frequently used

documentation

structures

Choosing a proper

documentation form

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 60/139

 The contract (a customer may prescribe the use of a given documentation

structure)

 The size of the document (the larger the document, the more structure is

needed)

3.7 Prototypes in Requirements Engineering

Prototypes play an important role both in engineering and design.

DEFINITION 3.5 PROTOTYPE: 1. In manufacturing: A piece which is built prior to the start
of mass production. 2. In software and systems engineering: A preliminary, partial
realization of certain characteristics of a system. 3. In design: A preliminary, partial
instance of a design solution.

Prototypes in software and systems engineering are used for three major purposes
[LiSZ1994]:

Exploratory prototypes are used to create shared understanding, clarify requirements,
or validate requirements at different levels of fidelity. Such prototypes constitute
temporary work products that are discarded after use. Exploratory prototypes may
also be used as a means of specification by example. Such prototypes must be treated
as evolving or durable work products.

Experimental prototypes (also called breadboards) are used to explore technical
design solution concepts, in particular with respect to their technical feasibility. They
are discarded after use. Experimental prototypes are not used in RE.

Evolutionary prototypes are pilot systems that form the core of a system to be
developed. The final system evolves by incrementally extending and improving the
pilot system in several iterations. Agile system development frequently employs an
evolutionary prototyping approach.

Requirements Engineers primarily use exploratory prototypes as a means for
requirements elicitation and validation. In elicitation, prototypes serve as a means of
specification by example. In particular, when stakeholders cannot express what they
want clearly, a prototype can demonstrate what they would get, which helps them
shape their requirements. In validation, prototypes are a powerful means for
validating the adequacy (see Section 3.8) of requirements.

Exploratory prototypes can be built and used with different degrees of fidelity. We
distinguish between wireframes, mock-ups, and native prototypes.

Wireframes (also called paper prototypes) are low-fidelity prototypes built with
paper or other simple materials that serve primarily for discussing and validating
design ideas and user interface concepts. When prototyping digital systems,
wireframes may also be built with digital sketching tools or dedicated wireframing
tools. However, when using a digital tool for wireframing, it is important to retain the
essential properties of a wireframe: it can be built quickly, modified easily, and does
not look polished nor resemble a final product.

Mock-ups are medium-fidelity prototypes. When specifying digital systems, they use
real screens and click flows but without real functionality. They serve primarily for
specifying and validating user interfaces. Mock-ups give users a realistic experience
of how to interact with a system through its user interface. They are typically built
with dedicated prototyping tools.

Native prototypes are high-fidelity prototypes that implement critical parts of a
system to an extent that stakeholders can use the prototype to see whether the
prototyped part of the system will work and behave as expected.

Prototype

Exploratory prototype

Experimental prototype

Evolutionary prototype

Prototypes in RE

Wireframe

Mock-up

Native prototype

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 61/139

They serve both for specification by example and for thorough validation of critical
requirements. Native prototypes may also be used to explore and decide about
requirements variants for some aspect—for example, two different possible ways of
supporting a given business process.

Depending on the degree of fidelity, exploratory prototypes can be an expensive work
product. Requirements Engineers have to consider the trade-off between the cost of
building and using prototypes and the value gained in terms of easier elicitation and
reduced risk of inadequate or even wrong requirements.

3.8 Quality Criteria for Work Products and Requirements

Obviously, Requirements Engineers should strive to write good requirements that
meet given quality criteria. RE literature and standards provide a rich set of such
quality criteria. However, there is no general consensus about which quality criteria
shall be applied for requirements. The set of criteria presented in this subsection aims
to provide a proven practice at foundation level.

Modern RE follows a value-oriented approach to requirements (see Principle 1 in
Chapter 2). Consequently, the degree to which a requirement fulfills the given quality
criteria shall correspond to the value created by this requirement. This has two
important consequences:

 Requirements do not have to fully adhere to all quality criteria.

 Some quality criteria are more important than others.

We distinguish between quality criteria for single requirements and quality criteria
for RE work products such as RE documents or documentation structures.

For single requirements, we recommend using the following quality criteria:

 Adequate: the requirement describes true and agreed stakeholder needs.

 Necessary: the requirement is part of the relevant system scope, meaning

that it will contribute to the achievement of at least one stakeholder goal or

need.

 Unambiguous: there is a true shared understanding of the requirement,

meaning that everybody involved interprets it in the same way.

 Complete: the requirement is self-contained, meaning that no parts

necessary for understanding it are missing.

 Understandable: the requirement is comprehensible to the target audience,

meaning that the target audience can fully understand the requirement.

 Verifiable: the fulfillment of the requirement by an implemented system can

be checked indisputably (so that stakeholders or customers can decide

whether or not a requirement is fulfilled by the implemented system).

Adequacy and understandability are the most important quality criteria. Without
them, a requirement is useless or even detrimental, regardless of the fulfillment of all
other criteria. Verifiability is important when the system implemented must undergo
a formal acceptance procedure.

Some people use correctness instead of adequacy. However, the notion of correctness
implies that there is a formal procedure for deciding whether something is correct or
not. As there is no formal procedure for validating a documented requirement against
the desires and needs that stakeholders have in mind, we prefer the term adequacy
over correctness.

Many approaches

No universal fulfillment

Quality criteria for single

requirements

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 62/139

For work products covering multiple requirements, we recommend applying the
following quality criteria:

 Consistent: no two requirements, recorded in a single work product or in

different work products, contradict each other.

 Non-redundant: each requirement is documented only once and does not

overlap with another requirement.

 Complete: the work product contains all relevant requirements (functional

requirements, quality requirements, and constraints) that are known at this

point in time and that are related to this work product.

 Modifiable: the work product is set up in such a way that it can be modified

without degrading its quality.

 Traceable: the requirements in the work product can be traced back to their

origins, forward to their implementation (in design, code, and test), and to

other requirements they depend on.

 Conformant: if there are mandatory structuring or formatting instructions,

the work product must conform to them.

3.9 Further Reading

Mavin et al. [MWHN2009] introduce and describe the EARS template. Robertson and
Robertson [RoRo2012] describe the Volere templates. Goetz and Rupp [GoRu2003],
[Rupp2014] discuss rules and pitfalls for writing requirements in natural language.
Cockburn [Cock2001] has written an entire book about how to write use cases.
Lauesen [Laue2002] discusses task descriptions and also provides some examples of
real-world RE work products.

The ISO/IEC/IEEE standard 29148 [ISO29148] provides many resources concerning
RE work products: phrase templates, quality criteria for requirements, and detailed
descriptions of the content of various RE work products, including a document
template for every work product. Cohn [Cohn2010] has a chapter on how to frame
requirements in a product backlog.

Gregory [Greg2016] and Glinz [Glin2016] discuss the problem of how detailed
requirements should be specified and to what extent complete and unambiguous
requirements specifications are possible.

Numerous publications deal with using models to specify requirements. The UML
specification [OMG2017], as well as textbooks about UML, describe the models
available in UML. Hofer and Schwentner [HoSch2020] introduce domain modeling
with domain storytelling. [OMG2013] and [OMG2018] describe the modeling
languages BPMN for modeling business processes and SysML for modeling systems,
respectively. The books by Booch, Rumbaugh, and Jacobson [BoRJ2005], [JaSB2011],
[RuJB2004] give more depth and (practical) applications of UML. Furthermore, the
following books and articles are recommended for more thorough knowledge and
patterns in modeling requirements: [DaTW2012], [Davi1993], [Fowl1996],
[GHJV1994]. [LiSS1994] and [Pohl2010] provide a better understanding of the quality
aspects of models.

Quality criteria for RE

work products

RuJB2004
RuJB2004

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 63/139

4. Practices for Requirements Elaboration

In the previous chapters, we learned about the nature of requirements as the
representation of the wishes and needs of people and organizations for something
new (e.g., a system to be developed or adapted), about the principles that underlie the
production of the requirements, and about ways to capture the requirements in
documentation. We establish requirements before we build or modify a (part of a)
system to ensure that the system is useful for—and accepted by—the people or the
organization that requested it. These requirements then serve as input for a
development team that will build and implement the system.

This is Requirements Engineering in a nutshell; it happens, explicitly or often
implicitly, whenever and wherever people try to develop something. In principle, the
quality of the requirements determines the quality of the output of the subsequent
development. Without proper requirements, it is unlikely that the resulting system
will be useful. Therefore, it is important to elaborate the requirements in a
professional way. This necessitates an explicit definition of the how to: the practices
to be used for high-quality elaboration.

That is what this chapter is about: it gives an overview of the tasks, activities, and
practices that are relevant for anyone involved in Requirements Engineering. It starts
with the search for potential sources of requirements and it ends with the delivery of
a single, consistent, understandable, and agreed set of requirements that can serve as
input for the efficient development, maintenance, and operation of an effective
system.

The first task in every Requirements Engineering effort will be identifying and
analyzing potential sources for requirements. This may seem like a simple and obvious
task, but as we will see in Section 4.1, there are quite a few aspects that need to be
considered and analyzed. Overlooking a source will inevitably lead to poor or even
missing requirements and therefore degrade the quality of the resulting system.

The next step is eliciting the requirements from these sources. It is like drawing water
from a well: you never know what is in the bucket until you have brought it to the
surface. In Requirements Engineering, this task is called elicitation; it is explained in
Section 4.2. In elicitation, we turn implicit desires, wishes, needs, demands,
expectations, and whatever else into explicit requirements that can be recognized and
understood by all parties involved.

However, when you ask two people about their requirements for a certain system,
you will rarely get exactly the same answers. In a whole series of requirements
elicited from different sources, it is almost certain that some of them will be
conflicting. As it is impossible to implement conflicting requirements in one and the
same system, conflict resolution will always be an important task in Requirements
Engineering, as described in Section 4.3.

Section 4.4 is devoted to the final task in Requirements Engineering: the validation of
requirements. The purpose of this step is to ensure that the quality of the set of
requirements elicited and the individual requirements within this set is good enough
to enable subsequent system development.

From the above description of Requirements Engineering tasks, you could get the
impression that they are performed as a linear process with a strict sequence of steps.
However, this is certainly not the intention of this description and rarely the case in
practice.

Figure 4.1 shows some process steps that are common in Requirements Engineering.
They might be performed in parallel, in loops, or sequentially—whatever is suitable
in the given situation.

Tasks in RE

Not a linear process

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 64/139

The starting point is often a limited set of obvious sources. During elicitation from
these sources, new sources are identified, triggering additional elicitation tasks.
When conflicts are encountered, more detailed elicitation may be required to find a
way out. In validation, it may appear that a source has been overlooked, a requirement
is faulty, or a conflict has remained uncovered, resulting in a new series of source
analysis, elicitation, and/or conflict resolution and validation activities. Even during
the subsequent system development, circumstances may necessitate additional
Requirements Engineering.

In agile projects, iterative and incremental Requirements Engineering and system
development go hand in hand, with requirements being elaborated just before the
development of a new system increment. In such projects, you will often see that a
project starts with a limited product backlog of high-level requirements that are
refined and detailed only when they are candidates for the next iteration.

Figure 4.1 Requirements Engineering is not a linear process

4.1 Sources for Requirements

Requirements are not like candy bars, lying on the shelf for everyone to pick them as
they please. In the introduction to this chapter, we compared requirements with
water to be drawn from a well: it is quite an effort to bring them to the surface.
Therefore, the first problem that a Requirements Engineer will face is “Where are the
wells?” As no requirement comes without a source, one of the first activities in
requirements elicitation is to identify the potential sources. It is not enough to identify
these sources only at the beginning of a project or product development; this is a
process that will be repeated over and over again.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 65/139

Right from the start of requirements elaboration, the Requirements Engineer should
be engaged in identifying, analyzing, and involving all relevant requirements sources,
as missing a relevant source will inevitably lead to an incomplete understanding of
relevant requirements. And this will continue until the end: the identification of
requirements sources is a process that requires constant reconsideration.

Chapter 2, Principle 3 emphasizes the necessity for (explicit and implicit) shared
understanding between and among all parties involved: stakeholders, Requirements
Engineers, developers. Understanding the context of the system to be developed in a
certain application domain is a prerequisite to being able to identify the relevant
requirements sources. Domain knowledge, previous successful collaboration,
common culture and values, and mutual trust are enablers for shared understanding,
while geographic distance, outsourcing, or large teams with high turnover are
obstacles.

In Chapter 2, Principle 4, we introduced the context as a concept that is essential for
understanding and specifying a system and its requirements. We defined the context
as that part of reality that lies between the system boundary and the context boundary.
Entities in this context will somehow influence the system or even interact with it but
will not be contained in the system itself.

This would make the search for requirements sources quite simple: just look around
in the context! But it is not that easy. At the start of a development process, the context
has not been defined yet; the system boundary and the context boundary still have to
be determined. Therefore, the search for requirements sources is an iterative,
recursive process.

Potential sources are analyzed for their relationship with the future system. If you
find no relationship when analyzing a potential source, this means that it is part of the
irrelevant environment and will not be analyzed for requirements. Potential sources
that appear to be part of the future system are of no interest to the Requirements
Engineer either; they belong to the developers. Only those entities for which analysis
reveals an interaction with, an interface to, or an influence on the future system, but
that remain (relatively) unchanged during the next development deserve attention as
sources for requirements. In this analysis, the system boundary and the context
boundary are delineated, vague at first and becoming sharper as more and more
sources are identified. As the context thus becomes clearer, it becomes easier to
identify new sources, which in turn sharpen the boundaries further.

The search for requirements sources usually starts with a few obvious sources, often
identified by the client at the start of a development effort. Initial elicitation from
these sources will uncover other potential sources, which are then analyzed to decide
whether or not they are relevant for the system. During this analysis, new potential
sources may again pop up. In fact, in every elicitation effort, the Requirements
Engineer will remain keen on detecting new sources. This may continue until the very
end of the development effort. However, we try to identify the major, most relevant
sources early, because all other Requirements Engineering activities depend on this
early identification.

In Requirements Engineering, we discern three major categories of sources:

 Stakeholders

 Documents

 (Other) systems

These categories are discussed in more detail in the following sections.

Continuous effort

Recursiveness

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 66/139

4.1.1 Stakeholders

In Chapter 2, Principle 2, you learned about the stakeholder as a person or
organization that influences a system’s requirements or is impacted by that system.

The stakeholders of a system are the main sources for requirements. Even more than
with other sources, failure to include a relevant stakeholder will have a major
negative impact on the quality of the final set of requirements; discovering such
stakeholders late (or missing them altogether) may lead to expensive changes or, at
the end, a useless system. To create a system that fulfills the needs of all of its
stakeholders, the systematic identification of stakeholders should start at the
beginning of any development effort and the results should be managed throughout
development. Stakeholders can be found in a broad area around the system, ranging
from direct and indirect users of the system, (business) managers, IT staff such as
developers and operators, to opponents and competitors, governmental and
regulatory institutions, and many others. The prime question for identifying a person
or an organization as a stakeholder is: “Does a relevant relationship exist between the
person/organization and the system?”

It helps to see stakeholders as human beings made of flesh and blood. If you identify
an organization as stakeholder, ask yourself questions such as the following: “Can I
identify a person who is responsible for this organization? Who can be seen as the
prime contact of this organization? Who represents this organization within our
company?” For instance, if the government is the stakeholder because a certain law is
involved, look for someone who represents the government as the source to be
approached for requirements. In this case, it is not very useful to identify the Prime
Minister as this person; the head of the internal legal department would be a better
choice.

Figure 4.2 Alexander's onion model

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 67/139

There is no standard technique for identifying stakeholders but Ian Alexander’s onion
model [Alex2005] can be a good start, see Figure 4.2. This model shows how a
(software) system is surrounded by several layers of higher-level socio-technical1 and
social systems, each having its own stakeholders. At the start of a requirements
development effort, a few of these stakeholders will be evident—for instance, end
users or customers. They can be used as a starting point in the search for other
stakeholders. After identifying them as relevant sources, the Requirements Engineer
will analyze their relationships, both in inner and outer surrounding systems. In this
analysis, new stakeholders will be found, who in turn may have other (and more)
relationships to be analyzed. You could call this the snowball principle: the more
stakeholders you have found, the easier it becomes to find new ones. However, when
arriving at stakeholders in Alexander’s wider environment, any outer relationships
will end up in the irrelevant environment, which means that they will no longer reveal
new sources.

Apart from stakeholders referring to other stakeholders, documents can often reveal
new stakeholders. Good examples are organizational charts, process descriptions,
marketing reports, and regulatory documents. For more information about
documentation as a source for requirements, see Section 4.1.2. Checklists of typical
stakeholder groups and roles can be a useful tool to avoid overlooking certain
inconspicuous potential stakeholders. Also, analyzing stakeholders of legacy or
similar systems can help.

As a Requirements Engineer, you will collect a lot of data about your stakeholders and
maintain this data until your work is done. You must know who the stakeholders are,
how you can reach them, when and where they are available, what their expertise is,
as well as their relevance as a source, what their attitude towards the project is and
their influence on it, what their roles are in the company and in the project, etc.
Usually, this information is kept in a stakeholders list, and it must be kept up to date,
as during all steps, you will remain in contact with all stakeholders—some intensely
and very closely, others infrequently and superficially. See Table 4.1 below for a
simplified example.

Table 4.1 Example of a stakeholders list

Name Dept Phone Availability Influence Interest

Marlene Owner 242263 Mondays
only

++ o

Peter Sales 481225 Permanent ++ +

Eva Legal 481237 Not in June + -

Hassan Logistics 552651 Permanent o ++

Mira Service
desk

242424 After 4pm - +

Maintaining a good, open relationship with the stakeholders is key to getting relevant
information from them. This relies primarily on behavioral characteristics such as
integrity, honesty, and respect.

1 A socio-technical system is a system that considers requirements spanning hardware,
software, personal, and community aspects, while recognizing the interaction between
society's complex infrastructures and human behavior.

Onion model

Stakeholders list

Respect

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 68/139

Open and frequent communication about your plans, your activities, and your results
is essential. You may have to turn stakeholders from initial opponents into
collaborators. As a Requirements Engineer, you must understand what the
stakeholders expect from you. You must also sell your work by showing them the
benefits of your solution and by removing the impediments that stakeholders
experience or expect on their way to that solution. Unfortunately, it is not uncommon
that certain (mostly internal) stakeholders foresee or in fact experience negative
consequences from the changes that result from your project. In such cases, it will be
hard to get their cooperation, even though you will certainly need it. Escalation to
higher levels in the organization may then be the only way to proceed, even though
the resulting relationship will be far from optimal. Stakeholder relationship
management [Bour2009] is an effective way to counter problems with stakeholders.

This implies a continuous process of gaining and maintaining the support and
commitment of stakeholders by engaging the right stakeholders at the right time and
understanding and managing their expectations.

In order to engage stakeholders in the elicitation process, you must ensure that they
know what the project is about and what their role within the project is. You have to
understand their needs and try to address these needs as far possible within your
competencies in the project. While stakeholders deserve to be treated with respect,
you may ask the same from the stakeholders, at least from those who are actively
engaged in the project. This means that they should have time for you when you need
them. They should give you the information that you ask for, as well as other
information that they know to be relevant. Their feedback on your work products
should be given timely and they should refrain from gossip about the project, etc.

Problems with stakeholders typically arise if the rights and obligations of the
Requirements Engineer and the stakeholders with respect to the proposed system or
the current project are not clear or if the respective needs are not sufficiently
addressed. If problems are encountered, a kind of stakeholder agreement or
stakeholder contract can help to provide all parties with the desired clarity. When this
occurs within an organization, endorsement by senior management may add to the
success of such an approach.

4.1.1.1 A Special Stakeholder: The User

Every system that we develop will have some interaction with certain users; why else
would you develop it? Of course, when you are working on the requirements for an
embedded technical subsystem, hidden inside some kind of complicated machinery,
users will only interact with it indirectly through several layers of surrounding
systems. In such cases, these users will not be your most important sources of
requirements. However, in many systems, specific human beings will have a direct
interface with the system: the users. Their acceptance of the system is vital to the
success of the project, so they are your prime interest and will receive special
attention during all Requirements Engineering.

There are two major categories of users:

 Internal users are directly related to the organization for which the system is

being developed, such as staff, management, subcontractors. They are

mostly limited in number, more or less known individually, and somehow

involved in the project. It is relatively easy to contact them and they can be

reached, influenced, and motivated through formal, existing channels.

Rights and obligations

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 69/139

 External users are outside the company, such as customers, business partners,

civilians. Their number may be (very) large, in many cases they are not known

individually, and they could be completely unaware of or indifferent to the

project. You cannot influence them through formal channels. To get in contact

with them, you may need to do special things to motivate them to participate,

such as advertising, promising some reward, or giving them free access to a

beta version. Forming a user panel or addressing the crowd (sometimes with

payment) can be useful ways of involving these users.

Be aware that in addition to these regular categories, it can also be relevant to pay
attention to misusers: people who intentionally try to interact with the system in a
harmful way, such as hackers or competitors. It is rarely possible to contact or to
influence them, but you can try to develop measures to discourage them, to keep them
out, or to detect foreseeable attempts of misuse.

This categorization should not be considered very strictly. We can imagine projects
in which users outside the company are small in number and can be reached easily,
so they can be seen as internal. On the other hand, in big companies, the distance to
the users can be so large that they should be treated more or less as external.

If you have a good insight into your user base, you should make a distinction between
user roles. Separate roles will usually have different information needs, will use the
system in their own way, and may have distinct access rights to functions and data—
for instance, users who input data versus supervisors who check this input. In such
cases, make sure that you include representatives of all relevant roles in the
elicitation.

Often, especially at the beginning of elicitation efforts, such insight will be missing.
Then, it is even more important to realize that there is no such thing as The User. The
User is not an amorphous mass of identical humans but rather a collection of
individuals, each of them with their own habits, wishes, and needs. When a system
has thousands of users or more, of course you will not be able to fine tune the
requirements to their individual needs. On the other hand, a one size fits all approach
aiming for the average user might not work either.

In such cases, it helps to discern a number of user types or user groups that show
certain, often behavioral similarities within the group as distinct from other groups.
In practice, having some three to seven groups often works best. Then, as a
Requirements Engineer, you will treat every group as a distinct source for
requirements. A good technique is the use of personas [Hump2017]. Personas are
fictitious individuals that describe typical user groups of the system with similar
needs, goals, behaviors, or attitudes.

User roles

User groups

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 70/139

4.1.1.2 Personas

There are two major approaches to creating personas:

 Data-driven

In this approach, personas are

developed with marketing

techniques, such as surveys,

focus groups, and other

ethnographic data collection

techniques. Usually, they are

called quantitative personas.

 Imagination

As a cheaper and quicker

alternative, personas may be

developed by imagination—for

instance, in a brainstorming

session with the project team.

We call them ad hoc personas.

As a Requirements Engineer,

you must be aware that ad hoc

personas are based on

imagination and assumptions.

These assumptions must be

checked and confirmed

throughout the Requirements Engineering process.

Basically, persona descriptions contain information that is relevant in view of the
development of the system at hand. Usually, this information will be enriched with
additional data, such as name, address, hobbies, and a drawing or portrait picture.

Such personas are called qualitative personas. They give a human face to the abstract
concept of persona. This may help you to understand that your work as a
Requirements Engineer not only relates to facts but also to emotions. Figure 4.3 gives
an example of such a qualitative persona description.

If you use personas in your project, it may be useful to look for a few individuals that
fit the persona descriptions and treat them as representatives of each group. In that
case, you have real stakeholders with whom you can communicate. However, always
remember that the group that such a stakeholder represents is an artificial one that
does not exist in the real world but only in the context of the system or project.

4.1.2 Documents

Documents can be a major source for requirements too. As a Requirements Engineer,
you often have to do a lot of reading, especially at the beginning of a project. All kinds
of documents may be relevant: company-, domain- and project-related documents,
product and process descriptions, legal and regulatory documentation, etc. As with
stakeholders, you can make a distinction between internal and external documents.
Internal documents can be easy to get but may be confidential and cannot be shared
without explicit consent.

Personas

Figure 4.3 Persona example

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 71/139

Often, you will need to sign a non-disclosure agreement before you receive access to
them. External documents may be difficult to find but are usually public; if not, make
sure that you are allowed to access and use them.

Documents can be a great way to find other sources. For instance, an internal process
description may mention certain roles as being involved in that process, which in turn
can lead you to new potential stakeholders. However, documents can also be direct
sources for requirements, especially those that are easily overlooked or not regularly
mentioned by stakeholders: constraints in standards, company guidelines, and other
legal or regulatory documents; detailed requirements in procedures and work
instructions; bright new ideas in marketing material from competitors. Studying
documentation can help you to understand the context of the system to be developed,
even by reading emails between people who took the initiative for the project.
Reading about analogous solutions for problems and goals in other companies and
domains can spark your imagination and show a feasible direction for your current
project.

As a Requirements Engineer, you should be aware that a document is always related
to some people: the author(s), the (target) audience, a manager responsible for or an
auditor checking adherence to it, someone who pointed out its existence to you, etc.
All those people may have a role as a stakeholder; it is up to you to find out whether
or not this is the case. You should always check the validity and relevance of a
document and you often need stakeholders to confirm this to you. If you were to
derive requirements from an invalid or outdated document, the system developed
from these requirements would probably fail.

Just like stakeholders, documents used as requirements sources must be managed.
You can use a document list, comparable to the stakeholder list discussed above. All
documents should be kept in some kind of common, indexed library with a unique
identification to allow them to be referenced. Dates and version numbers are
important to guard against working with outdated versions; you could check at
regular intervals whether a newer version has been published and whether this
influences the requirements. You should preferably work with final versions but in
practice, you often have to deal with drafts, so you also have to record the status of
documents. Keep old versions in an archive, because they may be important to
understanding how a system and its requirements evolved. Setting up suitable and
accurate management of the documents involved right from the start of a project will
save you a lot of work later on, in Requirements Engineering, development, and
deployment. It is a good starting point for establishing backward traceability, as
discussed in Section 6.6.

4.1.3 Other Systems

You can also consider other systems as sources for requirements of the system you
are interested in. Here, you can make a distinction between internal and external
systems, just as in documentation and with the same considerations about access and
confidentiality. Another distinction is that of similar systems versus interfacing
systems.

Similar systems have certain functionalities in common with the system to be
developed. They may be predecessor or legacy systems, competitor systems,
comparable systems used in other organizations, etc. You often study them through
their documentation but sometimes you can observe them in action or try them out
as if they were a kind of prototype. You may be able to contact their users to learn
more about the functionalities and solutions of such systems. Predecessor or legacy
systems are often a good source for identifying detailed (functional and quality)
requirements and constraints.

Relationship with

stakeholders

Similar systems

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 72/139

However, be aware that (especially technical) constraints from the past may not be
relevant anymore and may no longer restrict your current solution space.

Sometimes, a new system and a legacy system will coexist during a certain period,
leading to additional requirements—for instance, with regard to data sharing.
Competitor and comparable systems may be studied for their solution characteristics
and can be a good source for identifying delighters (see Section 4.2.1).

Interfacing systems will have a direct relationship with the system for which you are
developing the requirements. They will exchange data with your system as a source
and/or a sink though some (synchronous or asynchronous, in real time or in batch)
interface (see also Section 3.4.2 on system interfaces in context modeling). The
correct configuration, content, and behavior of such an interface is often essential for
ensuring that your system works, and you will therefore have to understand the
system in detail. You can study interfacing systems through their documentation, but
as every (technical) detail is important here, simulation or testing may be necessary.
With regard to older or legacy systems in particular, you cannot trust their
documentation to be up to date so you will need some proof. To understand an
interface, you will also have to understand the context, functionality, and behavior of
the interfacing system. It will be helpful if you can contact application managers,
architects, or designers of such systems, especially if the interfacing system itself has
to be updated to allow for the new interface. Also be aware that an interfacing system
will itself have users; it may be interesting to consider these users as stakeholders in
Alexander’s wider environment of your own system.

4.2 Elicitation of Requirements

If we continue the analogy of water being drawn from a well, we are now at the point
that we have found the well and we start pulling the rope to get the bucket full of the
required water (or in this case requirements) to the surface. That is what we call
elicitation: the effort expended by the Requirements Engineer to turn implicit desires,
demands, wishes, needs, expectations—which until now were hidden in their
sources—into explicit, understandable, recognizable, and verifiable requirements. Of
course, we will have to use all wells to be complete and pull the rope in the right way
to make sure that we get all the water to the surface. In Requirements Engineering
terminology, we say that we should apply the right elicitation techniques.

A common categorization of elicitation techniques is the distinction between:

 Gathering techniques

 Design and idea-generating techniques

From these categories, you can select a wide range of elicitation techniques, each with
their own characteristics. Figure 4.4 gives an overview of elicitation techniques in
their categories and subcategories.

Interfacing systems

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 73/139

Figure 4.4 An overview of elicitation techniques

A critical key competence of the Requirements Engineer is the ability to choose the
right (mix of) techniques under the given circumstances. Picking the right ones may
depend on many factors, such as:

 Type of system

A completely new innovative system will benefit more from creativity

techniques, while a replacement system in a safety-critical environment may

need questioning techniques and system archaeology.

 Software development life cycle model

In a waterfall project, you may have planned for extensive techniques such as

apprenticing or analogies, while in an agile environment, brainstorming,

storyboarding, and prototyping may prevail.

 People involved

For instance, field observation will probably not be appreciated in highly

confidential businesses; a comprehensive survey may be preferred over a

high number of individual interviews.

 Organizational setup

A solid government organization needs a totally different approach to a young

startup; a dispersed, highly decentralized company needs a different

approach to a compact company with a single location.

The best results are usually achieved with a combination of different elicitation
techniques. For a systematic approach to selecting them, see [CaDJ2014].

Elicitation techniques are—or at least, should be—able to detect all kinds of
requirements. In Requirements Engineering practice, however, explicit functional
requirements are often overrated, and the more implicit quality requirements and
constraints get less attention.

This may result in a system that—with all functional requirements being fulfilled—
does not perform, has poor usability, does not comply with architectural guidelines,
or fails to meet certain other quality requirements or constraints, and consequently
will not be accepted.

Selecting the right

technique

Quality requirements

and constraints

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 74/139

Stakeholders can be sources, but you will often find more information in documents.
For the elicitation of quality requirements, applying a checklist based on the ISO 25010
standard [ISO25010] can help to detect and quantify them—for example, in preparing
for an interview. Constraints can be found by considering possible restrictions of the
solution space—for example, technical, architectural, legal, organizational, cultural,
or environmental issues. Relevant documentation can often be identified through
staff members.

4.2.1 The Kano Model

One of the major circumstances to consider in selecting an elicitation technique is the
nature and the importance of a requirement that we are trying to uncover. To gain
more insight into the nature of certain requirements, the Kano model [Verd2014]
comes in handy. This model, shown in Figure 4.5, classifies features of a system into
three categories:

 Delighters (synonyms: excitement factors, unconscious requirements)

A delighter is a feature that customers are not aware of; that is why we call

them unconscious. The customers do not ask for the feature because they do

not know that it is possible in the system—for instance, a smartphone that can

be turned into a beamer. At first, when the feature is new on the market, most

customers will have their doubts about it, but when some early adopters have

tried it out and start spreading the word, more and more people want to have

it. If a delighter is absent, no one will complain; but when present, this can be

a differentiating feature that attracts lots of customers.

 Satisfiers (synonyms: performance factors, conscious requirements)

A satisfier is something that the customers explicitly ask for (hence conscious

requirements). The more satisfiers you can put into your system, the higher

the satisfaction of the customers will be. An example could be the number of

lenses and video options in a modern smartphone. Because adding satisfying

features usually also means higher costs, you will often need a kind of

cost/benefit analysis to decide how many of them will be incorporated in the

system.

 Dissatisfiers (synonyms: basic factors, subconscious requirements)

A dissatisfier is also a feature that the customers do not ask for. Here,

however, the reason for not asking for it is that the feature is so obvious

(subconscious) that the customers cannot imagine it not being part of the

system; these features are tacitly considered as must-haves. Imagine a

smartphone without GPS. If a dissatisfier is included as a feature of a system,

customers will not notice it because they think the system cannot exist

without it. However, if you overlook such a requirement and leave it out of the

system, customers will be very upset and will refuse to use the system.

Kano model

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 75/139

The Kano model looks at requirements from the perspective of the customer. It
focuses on differentiating features, as opposed to expressed needs. With the Kano
model in mind, you may find more requirements than when focusing only on the
explicitly formulated needs from the stakeholders. As we will see later in this chapter,
all categories can be linked to distinct elicitation techniques.

Figure 4.5 The Kano model

In fact, the original Kano model contains two more categories, the indifferent (or I
don’t care) and the reject (or I hate) requirements. These categories do not get much
attention in most Requirements Engineering handbooks but can still be useful for you
as a Requirements Engineer. Suppose, for instance, that developers want to add a
certain feature to the system for technical reasons. If, after analysis, you find that the
customers are indifferent to this feature, it is safe to include it in the system. However,
if it turns out to be a reject requirement, you should tell the developers to look for a
less harmful alternative, as implementing this requirement can turn out to be a costly
mistake.

One interesting observation when working with the Kano model is that requirements
tend to change over time. If someone introduces a new feature, there is no certainty
about how the market will react to that feature. Sometimes, customers will be
indifferent to it, and the feature will survive only if it does not increase the price of
the product.

Perspective of the

customer

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 76/139

If customers reject it, the feature will probably be removed from the product as soon
as possible. However, when (maybe initially a vanguard of) the customers like the
feature, it will become a delighter, a unique selling point for which the customers are
prepared to pay the price. As more and more customers discover, experience, and like
this new feature, it will become a satisfier that is explicitly asked for. Gradually, when
similar systems start to implement the same feature, customers may forget that
systems did not originally include such a feature and will take it for granted, turning
it into a dissatisfier. That is why many systems contain features that the users
consider as indispensable without knowing why and thus without explicitly asking
for them.
A good example is the camera function on cell phones, for which this process took less

than 20 years. The first time a camera was introduced as part of a cell phone, most

customers were puzzled: no one had asked for this feature and most customers thought

“If I want to take a picture, I need a camera.” However, some early adopters tried it out

and discovered the convenience of taking pictures without a dedicated camera and being

able to share them instantly with other people without making a print. They liked the

camera feature as a delighter and all brands started to implement it in their phones,

turning it into a satisfier: the better the pictures were, the more satisfied the user was.

Nowadays, when buying a new cell phone, everybody takes for granted that it will have a

camera function so it has become a dissatisfier: “If I can’t take a picture with this cell

phone, it is useless.”

How can you categorize a specific feature? You use the technique of Kano analysis.
For a specific feature, you ask two questions to a representative group of potential
users: (1) “What would you feel if this feature were present in the system?” and (2)
“What would you feel if this feature were absent from the system?” You let them score
the answers on a 5-point scale between “I love it” and “I hate it” and then plot the
average answer on the Kano analysis matrix as shown in Figure 4.6. The cell that
comes up gives you the Kano classification for the feature.

The next question is: why bother with Kano analysis in requirements elicitation?

Kano analysis matrix

Figure 4.6 Kano analysis matrix

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 77/139

As we explain in the following sections, you will need different techniques to find
these different categories of features. By themselves, stakeholders will mainly talk
about their satisfiers—their conscious requirements that they explicitly ask for. It is
much more difficult to detect the other categories but fortunately, there are several
useful techniques for doing so.

4.2.2 Gathering Techniques

With gathering techniques, you examine the different sources that you have identified
and elicit the requirements from there. These established techniques have been
commonly used throughout Requirements Engineering and predominantly yield
satisfiers and dissatisfiers.

Gathering techniques can be further subdivided into four categories:

 Questioning techniques

 Collaboration techniques

 Observation techniques

 Artifact-based techniques

Questioning techniques are always used in an interaction with stakeholders. The
Requirements Engineer poses appropriate questions to the stakeholders in order to
let the stakeholder do the thinking and to receive answers from which requirements
can be derived. Examples of questioning techniques are:

 Interview: Due to their flexibility, interviews are probably one of the most

frequently used elicitation techniques. They do not require specific tools and

can be used to elicit high-level requirements as well as very specific ones.

Usually, an interview is a one-to-one session between a Requirements

Engineer (interviewer) and an individual stakeholder (interviewee), but a

small group of interviewees is also an option. Typically, requirements elicited

with an interview are satisfiers, as the interviewee voices conscious

information. The interview technique is not overly complicated and most

people have a good understanding of what it is. However, you need clear goals

and good preparation to obtain useful results. Interviews can reveal detailed

information and offer flexibility based on the answers given. They are rather

time-consuming, so this technique is less appropriate when you want to reach

large numbers of stakeholders.

 Questionnaire: With a questionnaire, a larger group of stakeholders is asked to

answer—orally, in writing, or on a web page—the same set of questions,

which are presented in a structured way. Quantitative questionnaires are

used to confirm hypotheses or previously elicited requirements. They use

closed-ended questions (only predefined answers allowed) and can therefore

be evaluated quickly and deliver statistical information. On the other hand,

qualitative questionnaires use open-ended questions and can find new

requirements. They tend to deliver complex results and are thus usually more

time-consuming to prepare and to evaluate. In general, questionnaires are a

preferred technique for large groups. Be aware, however, that designing a

good questionnaire involves quite a lot of effort. A questionnaire is often the

next step after obtaining a preliminary idea based on a series of interviews in

order to validate these ideas within a larger group.

Questioning techniques

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 78/139

In the category of collaboration techniques, we find all kinds of collaboration between
the Requirements Engineer and other people (stakeholders, experts, users,
customers, etc.). Some examples are:

 Workshops

Workshop is an umbrella term for group-oriented techniques, ranging from

small informal meetings to organized events with several dozen or even

hundreds of stakeholders. A nice definition is as follows: "A requirements

workshop is a structured meeting in which a carefully selected group of

stakeholders and content experts work together to define, create, refine, and

reach a closure on deliverables (such as models and documents) that

represent user requirements" [Gott2002]. With a workshop, you can get a

good global insight in a short time because you use the interaction between

the participants. If you need more detail, follow-up interviews or

questionnaires are appropriate. Workshops can serve as a gathering

technique but they can also be used in creativity techniques (see Section

4.2.3).

 Crowd-based Requirements Engineering

In crowd-based (also known as platform-based) Requirements Engineering

(see [GreA2017]), elicitation is turned into a participatory effort with a crowd

of stakeholders, in particular the users, leading to more accurate

requirements and ultimately better software. The power of the crowd lies in

the diversity of talents and expertise available within the crowd. As the

amount of data obtained from the crowd will be large, an automated platform

for processing this data is essential. This platform should offer community-

oriented features that support collaboration and knowledge sharing and

foster the engagement of larger groups of stakeholders in the collection,

analysis, and development of software requirements, as well as validation and

prioritization of these requirements in a dynamic, user-driven way.

Observation techniques are also applied in relation to stakeholders. The stakeholders
are observed while they are engaged in their normal (business) processes in their
usual context without direct interference from the Requirements Engineer.
Observation techniques are particularly useful for identifying dissatisfiers. You may
observe peculiar activities, sequences, data, etc. that are so common to the
stakeholders that they do not mention them, and these aspects thus do not easily
come to light in gathering techniques.

Common forms of observation techniques are:

 Field observation

During field observation, the Requirements Engineer watches (mostly) end

users in their environment while these users perform the activities for which

a system is to be developed. Field observation is typically used in situations

where interaction would distract the users or would interfere with the

process itself and potentially falsify results. It can even be applied without

informing the subjects observed, e.g. by sitting with other patients in a

dentist’s waiting room to observe their behavior. With field observation, you

will be able to detect (often detailed) requirements that would not easily be

found with other techniques—for instance, because actions and behaviors are

too complicated to put into words.

Collaboration

techniques

Observation techniques

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 79/139

Be aware that field observation requires a lot of preparation, a sharp eye, and

lots of time. Video is quite helpful for capturing stakeholder behavior. It can

be used in conjunction with direct field observation and may even replace it

in situations where the actual presence of the Requirements Engineer is not

allowed or desired. Video offers the possibility of postprocessing to allow for

detailed investigation of acts and proceedings that are difficult to observe.

 Apprenticing

Apprenticing differs from field observation in that it is participatory. In

apprenticing, the Requirements Engineer (apprentice) does a kind of

internship in the environment in which the system at hand will be used (or is

already in use) and experienced users (masters) teach the apprentice how

things work. The apprentice participates but does not interfere; they act like

a novice in the field and are allowed to make mistakes and ask “dumb”

questions. The aim is to create a deep understanding of the domain, the

business, and the processes before the actual elicitation of the requirements

starts. A follow-up with interviews and questionnaires will often be required

to verify the initial ideas. The resulting requirements can subsequently be

documented and validated. An optimal duration for such an internship

depends on many different factors (e.g., complexity of the process,

repetitiveness, time availability of master and apprentice) but usually varies

between one day and several weeks. Be aware that apprenticing may be

difficult or impossible to organize in certain domains, such as medicine,

aviation, or the military.

Artifact-based techniques do not use stakeholders (directly) but rather work products
such as documents and systems, or even images, audio and video files, as sources for
requirements. These techniques can find (sometimes very detailed) satisfiers and
dissatisfiers. It is usually a time-consuming task to examine (often poorly structured,
outdated, or partly irrelevant) work products in detail. Nonetheless, artifact-based
techniques can be useful, particularly when stakeholders are not readily available.

A few examples of artifact-based techniques are:

 System archaeology

In system archaeology, requirements are extracted from existing systems—

such as legacy systems, competitor systems, or even analogous systems—by

analyzing their documentation (designs, manuals) or implementation (code,

comments, scripts, user stories, test cases). This technique is mainly used if an

existing system has been used for many years and is now to be replaced by a

new system for whatever reason; the new system has to cover the same

functionality as the old one, or at least certain parts of it. System archaeology

often takes a lot of time but may reveal detailed requirements and constraints

that are not easily detected otherwise. However, you will need extra time to

check, through other channels, whether or not these requirements are still

valid and relevant.

Artifact-based

techniques

Examples for artifact-

based techniques

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 80/139

 Feedback analysis

There are many ways to collect feedback from (potential) users and

customers, be it on an existing system or on a prototype. Feedback data may

be structured (e.g., a 5-star rating in an app store) or unstructured (like

review comments). It may be gathered via web surveys and contact forms,

during beta or A/B testing, on social media, or even as customer remarks

received in a call center. Often, the amount of data is quite large, and analysis

will be time-consuming. However, the feedback can be very useful for gaining

insight into the user’s pains and gains. Negative scores and critical remarks

will help you to detect unnoticed dissatisfiers. Positive scores and

compliments will give you additional information about satisfiers.

Occasionally, comments may even contain innovative ideas that can be turned

into delighters. Feedback analysis can thus result in adjustment of existing

requirements but also to the discovery of new ones.

 Reuse of requirements

Many organizations already have a large collection of requirements that have

been elicited and elaborated in the past for previous systems. Many of these

requirements may be applicable for a new system too, especially

requirements that have been derived from an overarching domain model.

Therefore, reuse of existing requirements can save lots of time and money

because you can skip their elicitation. However, this works only if this

collection of existing requirements is up to date, managed effectively, easily

available, and documented extensively, which unfortunately is not often the

case. Even if reuse is feasible, be aware that you still need to validate with the

stakeholders whether these reusable requirements are relevant and valid in

the new situation, be it directly or with some adjustments.

4.2.3 Design and Idea-Generating Techniques

In the past, Requirements Engineering has focused on gathering and documenting the
necessary requirements from all relevant stakeholders by applying gathering
techniques as introduced in the previous section. The growing influence of software
as an innovation driver in many businesses is now increasingly demanding a new
positioning of Requirements Engineering as a creative, problem-solving activity. This
involves the application of other techniques that no longer consider stakeholders
(and their documents and systems) the one and only source of requirements.
Innovative systems need new, maybe disruptive features that the current
stakeholders cannot imagine (yet).

Design and idea-generating techniques have emerged to fulfill this need. These
techniques promote creativity, mostly within teams, for the generation of ideas and
may provide additional ways to elaborate a given idea. These techniques can find new
requirements that are often delighters. Many diverse techniques exist within this
broad category, some remarkably simple, others quite elaborate. We will look at a few
examples from two subcategories:

 Creativity techniques

 Design techniques

Design and idea-

generating techniques

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 81/139

In addition, we will look at the emerging field of design thinking.

Creativity techniques stimulate creativity in order to find or to create new
requirements that cannot be gathered directly from the stakeholders because the
stakeholders are not aware of the feasibility of certain new features or (technical)
innovations. These techniques are usually applied within diverse, multi-disciplinary
teams of IT staff such as analysts, Requirements Engineers, developers, testers,
product owners, application managers, etc., with or without business representatives,
users, clients, and other stakeholders. The techniques stimulate out-of-the-box and
borderless thinking and elaboration of each other’s ideas. Unfortunately, none of
them guarantee success in generating creative results as several mechanisms in our
brain have to come together to enable creative ideas.

An obvious example where creativity techniques are important is the games industry. You

can of course ask gamers for their requirements with a gathering technique and you will

learn what gamers like or dislike about the current games. However, to develop a

successful game, you need to surprise the gamers with something new; you have to

discover their delighters. That is exactly where creativity techniques fit in.

Several preconditions have been identified as important factors for creativity to
emerge:

 Chance—and therefore time—for an idea to come up

 Knowledge of the subject matter, which raises the odds for an idea that makes

the difference

 Motivation, as our brain can only be creative if there is a direct benefit for its

owner

 Safety and security, as useless ideas must not have negative consequences

Two examples of creativity techniques are presented here:

 Brainstorming

Brainstorming (see [Osbo1948]) supports the development of new ideas for a

given question or problem. As with most creativity techniques, the crucial

point of brainstorming is to defer judgment by separating the finding of ideas

from the analysis of ideas. Some general guidelines for brainstorming include:

o Quantity prevails over quality.

o Free association and visionary thinking are explicitly desired.

o Taking on and combining expressed ideas is allowed and desired.

o Criticizing other participants’ ideas is forbidden even if an idea seems to

be absurd.

After a brainstorming session, the ideas that have emerged are categorized,

assessed, and prioritized. Selected ideas then serve as input for further

elicitation.

Creativity techniques

Preconditions

Examples of creativity

techniques

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 82/139

 Analogy technique

The analogy technique (see [Robe2001]) helps with the development of ideas

for critical and complex topics. It uses analogies to support thinking and the

generation of ideas. Its success or failure is influenced mainly by the selection

of a proper analogy for the given problem. The selected analogy can be close

to (e.g., the same problem in another business) or distant from (e.g.,

comparing an organization with a living organism) the original problem. The

application of the analogy technique consists of two steps:

o Elaborate the aspects of the selected analogy in detail without referring

to the original problem.

o Transfer all identified aspects of the analogy back to the original problem.

The resulting concepts and ideas will then be a starting point for additional

elicitation.

Design techniques can be seen as a special category of creativity techniques that
provide additional, explorative, or combinatorial techniques to elaborate ideas and
gain further insights for a given idea. Many of these techniques start from market
research or bottleneck analysis and rely heavily on visualization, team cooperation,
and customer feedback.

Popular techniques in this category include:

 Prototyping

By prototype (in relation to elicitation; see also Section 3.7 for more

information), we mean a kind of intermediate work product that is created or

released to generate feedback. Prototypes can range from simple paper

sketches to working pre-release versions of a system. They allow future users

to experiment with the system in a more or less tangible way and to

investigate certain, as yet unclear, characteristics during Requirements

Engineering and before the actual implementation. As we will see in the

section on validation (4.4.2), prototypes are primarily used for checking that

previously defined requirements have been implemented correctly. However,

with proper guidance of the users and analysis of their feedback, this

technique can also be used to derive new requirements. It may be particularly

useful for detecting non-functional requirements, dissatisfiers and

constraints, or whatever other characteristics that cannot easily be

understood or defined up front in models and documentation.

 Scenarios and storyboards

The word scenario stems from the theater, where it is used to refer to an

outline of a play, opera, or similar, indicating a sequence of scenes with their

characters. In IT, we use this term to describe a flow of actions for a system,

including the users involved (who we usually call actors here). Through

scenarios, you can explore alternative ways of realizing a process in a system.

Because of their lightweight structure, they are easy to develop and can be

changed rapidly. In the same way as for prototypes, scenarios and

storyboards can be applied in both (early) elicitation and (later) validation of

requirements.

Scenarios can be documented in a written or a visual form. The visual form of

a scenario is called a storyboard.

Design techniques

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 83/139

A storyboard is typically a kind of comic strip with a series of panels that show

the interaction of certain personas with the system. See Figure 4.7 for an

example. Scenarios and storyboards are useful for early elaboration of ideas

in terms of processes and activities.

Figure 4.7 Example of a storyboard

Design thinking is not so much a technique but rather a concept, an attitude, a
philosophy, a family of processes, and often a toolbox full of techniques. The focus is
on innovation and problem solving. Several variants of design thinking exist, mostly
using lightweight, visual, and agile techniques. Two basic principles can be found in
all variants:

 Empathy

The first step for design thinkers is to find the real problem behind the given

problem. They try to understand what stakeholders really think, feel, and do

when they interact with a system. Therefore, we often refer to design thinking

as human-centered design. Personas, empathy mapping, and customer co-

creation are common techniques to this end.

 Creativity

A common characteristic of design thinking is the diamond: the alternation of

divergent and convergent thinking. Divergent thinking aims at exploring an

issue more widely and deeply, generating lots of different ideas, and

convergent thinking focuses, selects, prunes, combines these ideas into a

single final delivery. A basic pattern, the double diamond model, is shown in

Figure 4.8 (see [DeCo2007]).

A detailed treatment of design thinking is beyond the scope of this Foundation Level
Handbook.

Design thinking

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 84/139

Figure 4.8 The double diamond

4.3 Resolving Conflicts regarding Requirements

During elicitation, you gather a broad collection of requirements from different
sources, with different techniques, and at different levels of abstraction and detail.
The elicitation techniques that you use do not guarantee by themselves that this
collection as a whole forms a single, consistent, agreed upon set of requirements that
captures the essence of the system. Both during and after elicitation of a set of
requirements for a certain system, you may find out that some of the requirements
are conflicting: they may be inconsistent, incompatible, contradictory. It might be that
requirements conflict with each other (e.g., “all text must be black on white” versus
“all error messages must be red”) or that some stakeholders have a different opinion
about the same requirement (e.g., “all error messages must be red” versus “user error
messages must be red, all other error messages blue”). As we cannot develop a
(specific part of a) system based on conflicting requirements, the conflicts must be
resolved before development can start. As a Requirements Engineer, you are the one
who should make sure that all stakeholders arrive at a shared understanding (see
Chapter 2, Principle 3) of the complete set of requirements as far as they are relevant
to them and that they agree on this set.

But what is a conflict? A conflict is a certain disagreement between people: “An
interaction between agents (individuals, groups, organizations, etc.), where at least
one agent perceives incompatibilities between her thinking/ideas/perceptions
and/or feelings and/or will and that of the other agent (or agents), and feels restricted
by the other’s action” [Glas1999]. In a requirements conflict, two or more
stakeholders have a different or even contradictory opinion regarding a certain
requirement or their requirements cannot be implemented in a certain system at the
same time; see Figure 4.9.

Resolving Conflicts

Conflict

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 85/139

Figure 4.9 A requirements conflict

Dealing with requirements conflicts can be difficult, painful, and time-consuming,
especially when personal issues are involved. However, denying or ignoring conflicts
is not an option, so the Requirements Engineer must actively search for ways to
resolve them. At the end, all stakeholders must understand and agree upon all
requirements that are relevant to them. If some stakeholders do not agree, this
situation must be recognized as a conflict that must be resolved accordingly.

4.3.1 How Do You Resolve a Requirements Conflict?

To resolve a requirements conflict properly, the following steps should be followed:

 Conflict identification

We often have conflicts in our everyday life. They give us an unpleasant

feeling, so a common strategy is simply to avoid, ignore, or deny them. That

may make conflicts hard to find. Most of them tend to be hidden and can only

be detected by careful observation. There are many indicators that you can

pay attention to, both in communication and in documentation:

o In communication, you may observe behavior such as denial, indifference,

pedantry, continuously asking for more details, deliberately incorrect

interpretations, concealment, or delegation.

o In documentation, you may find things such as contradictory statements

by stakeholders, conflicting results from analysis of documents or systems,

inconsistencies across different levels of detail, and inconsistent use of

terms.

If you observe such indicators, this does not necessarily mean that there is a

requirements conflict, but you should certainly be suspicious. Thorough

discussion with the stakeholders can then bring a hidden conflict to the

surface.

Steps to resolve conflicts

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 86/139

 Conflict analysis

Once a conflict has been identified, the Requirements Engineer has to first

clarify whether this conflict is a requirements conflict or not. After all, a

requirements conflict is the primary responsibility of the Requirements

Engineer; other conflicts can be resolved by other participants, such as a

department manager or a team lead. The Requirements Engineer should fully

understand the nature of the requirements conflict before attempting to

resolve it. This means that you will have to collect more information about the

conflict itself and the stakeholders involved.

Many aspects deserve attention:

o Subject matter: the scope, the problem, or the real issue behind the conflict.

o Affected requirements: which specific requirements are affected?

o Stakeholders involved: who disagrees with whom about what?

o Opinions of the stakeholders: let them make their point as clearly as

possible so that all conflicting parties understand the underlying issue.

o The cause of the conflict: what is the reason behind the difference in

opinions?

o The history of the conflict: what has happened before that influences these

opinions now?

o Consequences: the estimated costs and risks associated both with resolving

the conflict or not resolving it.

o Project constraints: personal, organizational, content-specific, or domain-

specific constraints may determine the solution space.

Analyzing this information will help you to recognize the type of conflict (for

more information, see Section 4.3.2) and will indicate ways to resolve it.

 Conflict resolution

Once an in-depth understanding of the nature of the requirements conflict, the

attitude of the stakeholders involved, and the project constraints has been

reached, the Requirements Engineer will select a suitable resolution

technique. Many techniques can be used, as explained in Section 4.3.3. The

first step should always be to get the chosen technique accepted by the

stakeholders involved before applying it. If some stakeholders do not agree

up front with the application of a certain technique, they certainly will not

accept the outcome of it, so at the end, the conflict will not be resolved. In

principle, the Requirements Engineer is not one of the stakeholders involved,

so you can and should apply the selected resolution techniques in an objective,

strictly neutral way, and welcome any outcome that results from applying the

technique.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 87/139

 Documentation of conflict resolution

Conflict resolution may influence the requirements in a way that is not

obvious for someone who was not involved in the conflict. The resulting set of

requirements may seem illogical or inefficient. Therefore, the conflict should

be properly documented and communicated with regard to aspects such as

the following:

o Assumptions concerning the conflict and its resolution

o Potential alternatives considered

o Constraints influencing the chosen technique and/or resolution

o The way the conflict was resolved, including reasons for the chosen

resolution

o Decision-makers and other contributors

If you do not document the resolution, after a while, stakeholders may

simply forget or ignore the decisions that have been taken. And later in the

project, developers may not understand the rationale behind a particular

system design and may implement it in a different way.

You do not need to be afraid of requirements conflicts, as they will always occur. This
should not be a surprise to you; in fact, you should be troubled if you do not detect
any conflicts. They are quite common, so if you do not find them, you have probably
missed some. But never ignore them. If you do not resolve all requirements conflicts
that you notice right away, they will pop up later in the development process. And as
Barry Boehm [Boeh1981] already found out a long time ago, the later you discover a
problem, the more expensive it will be to solve it.

4.3.2 Conflict Types

To achieve a better understanding of the nature of a conflict, it is useful to distinguish
between different conflict types. This helps in selecting proper resolution techniques.

We discern six types of conflict:

 Subject matter conflict

A subject matter conflict occurs when the conflicting parties really have

different factual needs, mostly caused by the intended use of the system in

different environments. A good example is a system that is to be used in

different countries, each with their own legislation. It may be difficult to

resolve such a conflict because the underlying facts cannot be changed. The

first thing to do then is to analyze and document these facts in detail and to

have the conflicting parties agree on the exact nature of the conflict.

 Data conflict

A data conflict is present when some parties refer to inconsistent data from

different sources or interpret the same data in a different way. This may be

due to poor communication, missing background data, cultural differences,

existing prejudices, etc. Estimates in particular, such as future sales, can easily

generate a data conflict as they are often based on assumptions. Detecting a

data conflict is not easy, because as a Requirements Engineer, you may think

that your own sources are right and your own interpretation is self-evident.

Due to this bias, you often suspect another conflict type at first.

Conflict types

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 88/139

Understanding how people can come to a different interpretation requires a

lot of empathy. Communication—over and over again—is key for both

detecting and resolving this type of conflict.

 Interest conflict

An interest conflict is based on different positions of the conflicting parties,

formed by personal goals, goals related to a group, or goals related to a role.

You should understand the concerns and needs of the stakeholders involved

before you can resolve this type of conflict. However, keep in mind that in the

case of personal interests, stakeholders often do not reveal their true motives

and they put forward seemingly factual but essentially artificial arguments. If

a discussion is about an interest conflict, you can observe the conflict parties

trying to convince each other to follow their arguments and understand the

needs of the role or group. Resolution may benefit from identifying and

strengthening shared interests. Working on a mutual understanding about the

gains and pains of both parties can be a starting point for finding a solution.

 Value conflict

A value conflict is based on differences in values and principles of the

stakeholders involved. Compared to an interest conflict, a value conflict is

more individual and related to global and long-term perspectives. Values are

more stable than interests and rarely change in the short term. If a value

conflict is the reason for a discussion, the conflict parties will emphasize why

their arguments are important from their point of view, revealing their inner

values and principles. They tend to insist on their arguments and are

unwilling to give up. To resolve such conflicts, look for higher values that unite

the parties. Value conflicts are notoriously difficult to resolve and achieving

mutual understanding and recognition of each other's principles is the best

you can get.

 Relationship conflict

A relationship conflict is usually based on negative experiences with another

party in the past, or in comparable situations with similar people. Often,

emotions and miscommunication are involved, which makes the conflict a lot

more difficult to solve. Conflict parties misuse discussions on requirements to

express their anger with the behavior of each other, forgetting about facts,

figures, and fairness. Bringing the discussion back to requirements will rarely

help; sometimes, uniting parties around a higher value is successful. In most

cases, you will have to escalate the issue to other stakeholders or a higher level

of authority; exchanging people is a potential resolution. Be aware that a

relationship conflict often co-occurs with other conflict types—for instance,

an interest conflict. Analyzing the root cause and solving the other conflict

type may then be the best way to improve the relationship.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 89/139

 Structural conflict

We call a conflict structural when it involves inequality of power, competition

over limited resources, or structural dependencies between parties. The

resulting imbalance (often perceived by only one of the parties) causes

problems in communication and decision making. Another reason for such

conflicts may be restrictions on resources or dependencies on work products

to be delivered by another party. Parties may use the discussion on

requirements to either change or preserve the status quo. Hierarchy may be

misused to push through decisions. For structural conflicts too, escalating the

issue to other stakeholders or a higher level of authority is often necessary.

Most requirements conflicts can be categorized as either a subject matter, data,
interest, or value conflict. Relationship and structural conflicts are often not directly
related to requirements and therefore the Requirements Engineer may not be the
appropriate party to resolve them. However, in reality, most conflicts fall into more
than one category as different causes interact. Therefore, it is advisable to pay
attention to all kinds of conflicts, even if the solution is not within your own
responsibility. If someone else should resolve the conflict, make sure that it happens;
as long as a conflict is not resolved, it will continue to have a negative impact on your
work as a Requirements Engineer.

4.3.3 Conflict Resolution Techniques

Depending on the type and the context (stakeholders, constraints, etc.) of a conflict, a
proper resolution technique is selected. Commonly used techniques include
[PoRu2015]:

 Agreement

An agreement results from a

discussion between the

stakeholders involved, to be

continued until they completely

understand each other’s

positions and agree to a certain

option preferred by all parties. It

can be very time-consuming,

especially when multiple parties

are involved. If successful, it will

provide additional motivation to

the stakeholders, so the result

has a good chance of being long

lasting. Striving to reach an

agreement is common in data conflicts. If this technique is unsuccessful within

an acceptable timeframe, other techniques can be used thereafter.

Mixed conflicts

Agreement

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 90/139

 Compromise

A compromise is quite similar to

an agreement. Here, however,

stakeholders agree on an option

that is not their preference but

that they can live with because

accepting the compromise is

considered better than continu-

ing the conflict. Therefore, a

compromise can also be long

lasting. The compromise may

contain new elements that were

not present in the original

preferences of the stakeholders

and that may have been

introduced by the Requirements

Engineer. A good compromise is an alternative in which all parties feel

comfortable with the balance of giving up things and getting something else

in return. A compromise is often next in line if an agreement cannot be

reached in time. It is suitable for subject matter conflicts and may also work

for interest and structural conflicts.

 Voting

Voting works best when a relatively simple choice has to be made between a

clear set of conflicting requirements. Stakeholders that participate in the

voting (usually not only the conflicting parties but all stakeholders involved)

should fully understand the alternatives and the consequences of their vote.

In order to avoid influences from dependencies or an imbalance of power,

voting is best done anonymously and with a neutral moderator. The voting

procedure itself should be agreed upon between the stakeholders before the

actual voting. Voting is a quick and easy means for conflict resolution but the

party that loses the vote will be disappointed and may need attention. Voting

can work for most conflict types and may be a good way to solve subject

matter and interest conflicts.

Compromise

Voting

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 91/139

 Overruling

If an agreement or a compromise

cannot be reached and at least

one of the conflicting parties

refuses to participate in voting,

overruling may be an option. It is

often applied under pressure,

when there is not enough time to

use more convenient techniques.

Usually, overruling is done by

transferring the choice between

conflicting requirements to a

decision maker who is higher in

authority or hierarchy than all

conflicting parties and has

enough power to have the

decision be implemented. Therefore, it is a good way to solve interest and

structural conflicts. In this situation, it is particularly important that the

decision maker fully understands the alternatives, the position of the

conflicting parties, and the consequences of the decision. A variant of

overruling is to outsource the decision to a third party—for instance, an

external expert. In that case, it is important to first get an agreement between

the stakeholders on the decision maker. As with voting, you may need to pay

attention to the loser.

 Definition of variants

Definition of variants is often

considered for subject matter,

interest, and value conflicts. We

have seen that we cannot

implement conflicting require-

ments in one and the same

system. Definition of variants

means that we build separate

solutions for all conflicting

requirements. This is usually

implemented by developing a

system that can be configured

through parameters to exhibit

the desired features. This may

seem like a perfect solution but it comes at a price: it takes a lot of time to

define the solution and a growing complexity (as well as additional costs) is

introduced into the system, both for development and during operations and

maintenance. This technique is therefore feasible only if enough time and

budget are available.

Overruling

Definition of variants

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 92/139

 Auxiliary techniques

In addition, there are several auxiliary techniques that are not usually used on

their own but rather to assist the above-mentioned techniques.

In Consider-All-Facts (CAF), you consider alternative solutions for a number

of predefined criteria—for example, cost, time, risk, available resources.

Weighing these criteria can provide more clarity about the pros and cons of

the alternatives and help to identify the best alternative.

Plus-Minus-Interesting (PMI, see [DeBo2005]) is a brainstorming and

decision-making tool. It encourages the examination of ideas and concepts

from more than one perspective and is therefore valuable for conflict

resolution. In PMI, the participants (usually all stakeholders involved) first

identify all positive aspects (plus) of the alternatives, then the negatives

(minus), and finally the interesting points, things that need further

investigation. The alternative with the most pluses and the fewest minuses is

the preferred alternative.

In fact, both CAF and PMI are variants of the decision matrix, a methodical

approach for conflict resolution. The conflicting requirements are assessed

based on a (larger) number of criteria, after which, scores on these aspects

are used to calculate a (weighted) final score for the alternatives. The highest

score then wins, like Alternative 1 in the example of Table 4.2 below. In fact,

prioritization (see Section 6.8) is then used as a resolution technique. As

stated earlier, these techniques are usually seen as auxiliary: they create

more insight into the alternatives and thus help with the chosen resolution

technique. They can even be used as a single technique if all stakeholders

involved agree to accept the outcome.

Table 4.2 Example of a decision matrix

4.4 Validation of Requirements

In Chapter 2, Principle 6, we emphasized the importance of validating the
requirements to avoid unsatisfied stakeholders. Because the requirements form the
input for subsequent system development, we must ensure their quality up front to
reduce wasted effort downstream, both at the level of the individual requirements
and of the complete set (Figure 4.10).

Auxiliary techniques

CAF

PMI

Decision matrix

Criterion

Weight

Alternative 1:

iPhone only

Alternative 2:

Android & iPhone

Score Weighted Score Weighted

Cust. base 2 3 6 4 8

Dev. cost 1 3 3 2 2

T.t. market 3 4 12 2 6

Reputation 2 2 4 4 8

User exp. 1 5 5 3 3

Total 30 27

Validation of

requirements

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 93/139

We should validate the coverage of stakeholders' needs by our documentation, the
degree of agreement among all stakeholders, and the likelihood of our assumptions
about the system context before we hand over requirements to the developers or
suppliers. Although the level of detail may vary, this applies just as well for iterative
as for sequential development approaches.

Figure 4.10 Upstream quality reduces downstream waste

Validation adds time and cost to the project, so its efficiency and effectiveness should
be a concern of the Requirements Engineer. Therefore, it is important to continuously
monitor and analyze defects that occur during development and in operation. If the
root cause of such defects appears to be in the requirements, the requirements
validation process has somehow failed. Therefore, as a Requirements Engineer, you
should continuously and actively look for opportunities to improve it.

4.4.1 Important Aspects for Validation

Regarding the concept of validation, certain aspects are important to get the
maximum value from it (see also [PoRu2015]):

 Involving the correct stakeholders

As a Requirements Engineer, you need to decide who you want to invite to

participate in the validation. In this respect, one important aspect that you

have to consider is the degree of independence between the people involved

in the elicitation of the requirements and those validating them. A low level of

independence (inviting stakeholders who have already participated in the

elicitation) is cheap and easy to organize but may overlook certain defects

because of the own focus, blind spots, conflicting interests, or flawed

assumptions of these persons. A higher degree of independence (for instance,

by inviting external reviewers or auditors) takes more time and effort to

organize and perform and brings higher (initial) costs but may in the long run

be more effective in finding more and more severe defects. Consequently,

higher risk in the project scope and/or the system context asks for a higher

degree of independence.

Continuous

improvement

Aspects for validation

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 94/139

 Separating the identification and the correction of defects

It may be tempting to fix every defect as soon as it has been detected.

However, this usually proves to be neither an efficient nor an effective way of

working, as defects may influence each other. A defect found later during

validation might invalidate the fixing of an earlier one. A requirement initially

marked as defective might prove to be correct when all requirements have

been studied. You might decide not to fix some (minor) defects in view of the

effort involved related to the total set of defects found. And after all, people

involved in validating requirements should concentrate on finding defects

and not on developing ideas on how to fix them. Therefore, the

recommendation is to first select (a coherent set of) requirements for

validation and to decide whether or not to fix certain defects found only after

checking the whole set.

 Validation from different views

A proper validation is always a group effort, not an activity performed by

Requirements Engineers on their own. The best results are achieved when

validation is performed by an interdisciplinary team in which selected

participants contribute their own expertise. In general, we can say that the

input, the output, and peers should be represented. In iterative projects, the

current agile team is a reasonable choice, but the degree of independence may

be low and additional validators should be invited; in sequential projects, a

specific team may be composed for each separate validation effort. Depending

on the phase of the project, input from business, users, developers, testers,

operators, and application managers is useful; sometimes, subject matter

experts or specialists on topics such as performance, security, and usability

can be added.

 Repeated validation

In sequential projects, most requirements are elicited and documented in the

initial phase and validated thoroughly at the end of that phase. However, this

should not be the only moment for validation. During the rest of the project,

new insights can lead to the original set of requirements being updated,

detailed, and expanded. This might threaten the quality, coherence, and

consistency of the requirements and thus additional validations may be

required. These are often planned at project milestones.

In iterative projects, many of the agile rituals include validation efforts.

Sprint planning, backlog refinement, sprint reviews, and even daily standups

offer opportunities to validate and improve the requirements. However,

these efforts often focus on individual, detailed requirements and the big

picture may be neglected. An initial validation of the complete product

backlog at the start of a project or increment is a good beginning. Other

useful initiatives are repeated hardening sprints and additional overall

validation at release times.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 95/139

4.4.2 Validation Techniques

As for other techniques, the Requirements Engineer can choose from a large toolbox
of validation techniques that differ in formality and effort. Many factors influence the
selection of these techniques—for instance, the software development life cycle
model, the maturity of the development process, the complexity and risk level of the
system, legal or regulatory requirements, and the need for an audit trail.

Often, in the course of a project, the degree of effort and formality increases towards
the end, as final decisions about the system and its implementation have to be taken.
Also, you will see that the amount, value, and level of detail of feedback from the
stakeholders increase as the work products to be validated become more concrete
and detailed. This entails the application of different validation techniques in different
stages of the project. At the beginning of a project, frequent short, lightweight
validation and feedback cycles are preferred, as is usual in agile approaches. This
ensures quality right from the start. Later in the project, more formal and time-
consuming one-off techniques will prevail.

In general, we discern three categories of validation techniques (see Figure 4.11):

 Review techniques

 Exploratory techniques

 Sample development

Review techniques and sample development are called static, as they concentrate on
analyzing the specifications of a system without executing it. In exploratory
techniques, the validation focuses on the actual (or simulated) behavior of the system
in operation; these techniques are called dynamic.

Figure 4.11 Categories of validation techniques

Validation techniques

Static vs dynamic

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 96/139

The common feature of review techniques is that they rely on visual study of early and
intermediate work products. They range from informal to very formal and can be
applied from the very beginning of a project until the implementation of the system.
In most cases, reviewing the requirements is limited to the earlier phases of a project.
Typically, in a review, we check static work products that define or describe how the
system should work. For more information about reviewing, see [OleA2018].

Informal reviews usually follow the author-reviewer cycle. An author sends a work
product to a group of people with the request to validate it. Usually, this is a small
group of team members, peers, and/or users involved in the project. Authors may
select the group by themselves or its composition may be prescribed by company
regulations. After a short (but often not predefined) period, the author collects all
review comments and uses them to update the work product at hand. It is good
practice to document the comments in a review register and to keep track of the way
in which they are processed. However, due to the informal nature of this type of
review, authors are free to decide whether and how to use the comments. Often, the
review is repeated over several draft versions until the author is satisfied with the
quality.

As they are informal, you might expect little benefit from these kinds of reviews for
validating and improving the quality of requirements. However, if all participants are
committed to quality, and are able and willing to spend enough time on the review
process, informal reviews are an easy, cheap, and approachable means of validation.
In fact, this approach is common for early drafts. For the final version of a work
product, a more formal technique may be a better choice.

Formal reviews follow a prescribed way of working. They are often used for
important or milestone work products, for final versions, and in situations where high
risks are at stake. While there are many flavors of formal reviews, they can be divided
into two main groups:

 Walkthroughs

The essence of a walkthrough is that the author of a work product explains it

step by step to an audience in an interactive session. In practice, walkthroughs

come in two variants, where (1) reviewers join the meeting without any

preparation and listen to the author, asking ad hoc questions; or (2) they

obtain the work product before the meeting and will prepare questions for

the author. Participants in the audience can make comments, identify flaws,

and suggest alternatives. The author gives more explanation if necessary and

can discuss solutions for weaknesses identified and weigh alternatives

against the original ideas. There are two occasions where walkthroughs are

best applied: (a) in an early project phase to discuss the feasibility of a certain

system concept or solution outline; and (b) on the transfer of an intermediate

work product to another party who will use it as input for subsequent

development. In iterative projects, walkthroughs are mostly present in the

form of regular refinement sessions prior to an iteration and sprint reviews

at the end of it.

 Inspections

Inspections are among the most formal review techniques. Here, the

responsibility for the review lies not with the author but with an independent

review leader, often called moderator. An inspection is normally performed in

the form of a meeting with the moderator, the author, and a group of

inspectors.

Review techniques

Informal reviews

Formal reviews

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 97/139

The inspectors are selected from peers, business, users, and/or experts. They

are asked to check the work product based on their specific expertise, to verify

its adherence to applicable standards, norms, and regulations, and to evaluate

it against agreed objectives. Often, this check by the inspectors is performed

during thorough individual preparation prior to the actual meeting, guided by

detailed checklists. In the review meeting, the author participates in the role

of a listener, explaining things that are not clear and trying to understand the

comments of the inspectors and the consequences for the work product.

Typically, an inspection follows a strict and documented process that is

managed by the moderator and focuses on finding defects and measuring

defined quality aspects and provides a detailed audit trail. In this form,

inspections are often used to decide on the release of a work product for a

next step in the development process, or even for final implementation.

Inspections are mostly applied in (safety-) critical systems and business

processes. In agile approaches, this formal way of reviewing is incorporated

in the methodology itself—for example, with the Scrum ceremonies

(refinement, planning, sprint review).

Exploratory techniques offer a group of stakeholders and prospective users the
opportunity to gain hands-on experience with an intermediate version of (part of) the
system under development. In contrast to reviews, exploratory techniques are
dynamic: they look at the (actual or simulated) behavior of the operative system as
experienced by the users through the user interfaces. The participants are invited to
use the system in a way that is similar to the intended use in production. They are
relatively free to do so but sometimes certain guidance is given. After a period of use,
the participants report their experiences and their feedback on the current behavior
of the system to the Requirements Engineer. This may include defects found and
suggestions for improvement.

Exploratory techniques are common in iterative and design thinking development
approaches. In fact, the usual incremental development, starting with the release of a
minimum viable product (MVP), followed by the addition of more functionality step by
step, while carefully measuring market reactions and adjusting the system
accordingly, can be seen as an exploratory validation of the requirements in
production.

Common exploratory techniques include:

 Prototyping

In validation with prototyping, a specific early version of the system is given

to a group of stakeholders for evaluation. This version may be explicitly built

for validation purposes, after which it is discarded; we call this an exploratory

or throwaway prototype. Of course, evolutionary prototypes, which are

continuously updated and extended until they end up in the final product, can

also be used for validation during their development. The essence of any

prototype is that, from the outside, it looks like the intended system, allowing

stakeholders to gain hands-on experience while the internal structure may

still be unfinished, inoperative, or even completely missing. When using a

prototype for validation, you may have it built to check a specific

characteristic, such as user interface, security, or performance.

Exploratory techniques

Iterative development

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 98/139

As we saw in Section 4.2.3, prototyping and storyboarding can also be used

as elicitation techniques. In fact, these techniques support both elicitation

and validation, going hand in hand: while validating requirements elicited at

an earlier point in time, you will almost certainly detect new requirements in

the feedback from the participants. Both aspects of prototyping are very

prominent in design thinking approaches (see [LiOg2011]).

 Alpha testing and beta testing

In alpha testing and beta testing, a fully featured, completely working pre-

production version of the system is provided to end users for operation with

the intended business processes in a realistic environment.

Alpha testing is done at the developer’s site in a simulated environment. The

group of participants is relatively small, some guidance may be given, and it

is possible to observe the interaction of the users with the system—for

instance, in a usability lab.

Beta testing is conducted at the end user's sites in real production (or in

whatever environment the end users decide). The system is offered (mostly

for free) to a (sometimes selected but usually unknown) group of users, with

the implicit request to validate its looks and behavior. In beta testing, it is

important to stimulate all participants to give their feedback and to provide

an easy way to do so. Analyzing this feedback after a prolonged period of use

can give valuable clues to the quality of the requirements. It is particularly

useful for checking certain assumptions made during elicitation and

development.

 A/B testing

A/B testing is often performed with a released version of the system in the

fully operational environment but can also be applied with pre-release

versions in a protected test environment. The essence of A/B testing is that

the system is offered to different (mostly randomly selected) groups of users

in two variants that differ in design or functionality and realize the user goals

in a different way. The reaction of both groups is measured and compared;

this works best when the groups are large enough to allow for statistical

analysis. The analysis will then give information on the quality of the

underlying requirements and on the correctness of previous assumptions.

A/B testing has a prominent role in The Lean Startup, one of the design

thinking approaches (see [Ries2011]).

In sample development, you provide a set of requirements as input for developers;
they try to produce some common intermediate work products (e.g., designs, code,
test cases, manuals) based on this input. The system itself is not operative (yet), so
this kind of validation is static, just like in reviewing. During this effort, the developers
may detect flaws such as unclarities, omissions, and inconsistencies that prevent
them from producing their intended output. Of course, these flaws will be fixed. At the
same time, however, the quantity and severity of the flaws detected is an indication
of the quality of the requirements. If this quality is not sufficient, more validation is
necessary—for instance, additional reviews.

A similar validation can be performed by Requirements Engineers themselves. In that
case, you try to document a set of requirements in a different form of representation
to the original type: commonly, converting a requirements specification created in
natural language into a relevant model, or a specific model into a textual description.

Elicitation and validation

go together

Alpha testing

Beta testing

Sample development

Converting

documentation types

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 99/139

This exercise is especially useful for detecting omissions. If you encounter serious
problems in this conversion, this indicates the need for additional validation.

4.5 Further Reading

Glinz and Wieringa [GlWi2007] explain the notion and importance of stakeholders.
Alexander [Alex2005] discusses how to classify stakeholders. Bourne [Bour2009]
deals with stakeholder management. Lim, Quercia and Finkelstein [LiQF2010]
investigate the use of social networks for stakeholder analysis. Humphrey
[Hump2017] discusses user personas.

Zowghi and Coulin [ZoCo2005] present an overview of requirements elicitation
techniques. Gottesdiener [Gott2002] has written a classic textbook on workshops in
RE. Carrizo, Dieste and Juristo [CaDJ2014] investigate the selection of adequate
elicitation techniques.

Maalej, Nayebi, Johann and Ruhe [MNJR2016] discuss the use of explicit and implicit
user feedback for eliciting requirements. Maiden, Gitzikis and Robertson [MaGR2004]
discuss how creativity can foster innovation in RE.

The book by Moore [Moor2014] is a classic about conflict management. Glasl
[Glas1999] discusses how to handle conflicts. Grünbacher and Seyff [GrSe2005]
discuss how to achieve agreement by negotiating requirements when validating
requirements or resolving conflicts.

Validation is covered in any RE textbook; see [Pohl2010], for example.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 100/139

5. Process and Working Structure

Whenever work has to be done in a systematic way, a process is required to shape and
structure the way of working and the creation of work products.

DEFINITION 5.1. PROCESS: A set of interrelated activities performed in a given order to
process information or materials.

A Requirements Engineering (RE) process organizes how RE tasks are performed
using appropriate practices and producing work products required. However, there
is no proven, one-size-fits-all RE process (see Section 1.4). Consequently,
Requirements Engineers have to configure a tailored RE process that fits the given
situation.

The RE process shapes the information flow and the communication model between
the participants involved in RE (for example, customers, users, Requirements
Engineers, developers, and testers). It also defines the RE work products to be used
or produced. A proper RE process provides the framework in which Requirements
Engineers elicit, document, validate, and manage requirements.

In this chapter, you will learn about the factors that influence the RE process and how
to configure an appropriate process from a set of process facets.

5.1 Influencing Factors

There are a variety of influencing factors to consider when configuring an RE process.
Before starting with the configuration of an RE process, these factors need to be
investigated and analyzed.

On the one hand, such analysis provides information about how to configure the RE
process. For example, when the analysis indicates that stakeholders have only a vague
idea about their requirements, an RE process should be chosen that supports the
exploration of requirements. On the other hand, the influencing factors constrain the
space of possible process configurations. For example, if the stakeholders are
available only at the beginning of a system development project, a process that builds
upon continuous stakeholder feedback would not be suitable. Below, we discuss
important factors for the RE process.

Overall process fit. When defining or configuring an RE process, it is vital to know and
understand the overall development process chosen for the system to be developed—
defining an RE process that does not fit the overall process does not make sense. The
overall process may require work products that the RE process must deliver. The
terminology used for the RE process should be aligned to the terminology of the
overall process. In particular, the terminology for the work products must be aligned.
This helps avoid confusion and misunderstandings. It also makes the introduction of
the RE process as well as the training and coaching of the people who have to work
according to the process easier. For example, if the system is developed using a linear,
plan-driven process that relies on the existence of a comprehensive system
requirements specification and a system glossary at the end of the requirements
phase, the RE process chosen must fit into the requirements phase of the overall
process and produce the two work products required.

Development context. The development context also informs the RE process. Things
to consider include the customer-supplier-user relationship, development type,
contract issues, and trust. When analyzing the development context, a couple of
questions need to be answered:

Process

Need for a tailored RE

process

Shapes information flow

and communication

Important influencing

factors

Overall process fit

Development context

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 101/139

 Customer-supplier-user relationship: Is there a designated customer who

orders the system and pays for it and a supplier who develops the system?

Are customer and supplier part of the same organization or do they belong

to different organizations? If the former is the case, which people act in the

role of customer and which act as supplier? Who are the users of the system?

Do the users belong to the customer’s organization? If not, do they use the

system as a product or service for interacting with the customer (for

example, in electronic business) or do they buy the system as a product or

service from the customer (for example, a mobile app)?

 Development type: What is the organizational framework for the

development of a system? Typical types include:

(1) A supplier specifies and develops a system for a specific customer who
will use the system.

(2) An organization develops a system with the intention to sell it as a
product or service to many customers in a certain market segment.

(3) A supplier configures a system for a customer from a set of ready-
made components.

(4) A vendor enhances and evolves an existing product.

 Contract: Is there a contract or similar agreement that formally defines

deliverables, costs, deadlines, responsibilities, etc.? Contracts may be classic

fixed-price contracts between a customer and a supplier, with fixed

functionality, deadlines, and cost, or may just give a financial framework,

while the functionality is defined iteratively.

 Trust: Do the parties involved trust each other? If, for example, the customer

and the supplier do not trust each other, the requirements have to be

specified in more detail than would be necessary in a trust-based

relationship.

Stakeholder availability and capability. The availability of stakeholders constrains the
configuration options for the RE process. For example, a process requiring continuous
close interaction with stakeholders cannot be chosen if core stakeholders are
available only for a short period of time at the beginning of the process.

The capability of the stakeholders also influences the process: the less stakeholders
are able to express their needs clearly, and the less they know their actual needs, the
more the RE process must accommodate the exploration of requirements.

Shared understanding. Only little Requirements Engineering is needed when there is
a high degree of shared understanding (see Chapter 2, Principle 3) between
stakeholders, Requirements Engineers, designers, and developers about the problem
and the requirements. Consequently, the better the shared understanding, the more
lightweight the RE process can be [GlFr2015].

Complexity and criticality. The degree of detail to which requirements need to be
specified depends strongly on the complexity and criticality of the system to be
developed. When a system is complex and/or critical with respect to safety or
security, the RE process chosen must accommodate a detailed specification of the
critical requirements, including formal or semi-formal models and strong
validation—for example, by verifying models that express prescribed behavior or by
building prototypes.

Stakeholder availability

and capability

Shared understanding

Complexity and

criticality

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 102/139

Constraints. Obviously, all influencing factors constrain the space of possible
configurations of an RE process. When we talk about constraints, we mean those
constraints that are explicitly imposed by, for example, the customer or a regulator.
Such constraints may imply the mandatory creation of certain work products and
following a mandatory process for producing these work products. Customers or
regulators may also demand an RE process that conforms to some given standard.

Time and budget available. If schedules and budgets are tight, the time and budget
available for RE need to be used wisely, which typically implies choosing a lightweight
RE process. Choosing an iterative RE process helps with prioritizing requirements
and implementing the most important ones within the given budget and schedule.

Volatility of requirements. If many requirements are likely to change, it is advisable to
choose an iterative, change-friendly RE process.

Experience of Requirements Engineers. The RE process chosen should match the
competencies and experience of the Requirements Engineers involved. Otherwise,
additional time and budget must be allocated to train and coach the process chosen.
It is better to choose a rather simple process that the Requirements Engineers can
handle properly than a sophisticated and complicated one that overburdens them.

5.2 Requirements Engineering Process Facets

Defining the RE process from scratch for every RE undertaking is a waste of effort.
Whenever the influencing factors allow it, the process should be configured from pre-
existing elements. In order to provide guidance on how to configure a proper RE
process, we describe three facets with two instances each, together with selection
criteria to be considered for each instance [Glin2019]. Later, in Section 5.3, we use
these facets to configure RE processes.

Figure 5.1 shows an overview of the facets and instances.

Figure 5.1 RE process facets

The facets can be considered to span a three-dimensional space of process
configuration options. Every facet instance comes with criteria for selecting it.

Constraints

Time and budget

available

Volatility of

requirements

Experience of

Requirements Engineers

Overview of process

facets

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 103/139

The applicability of these criteria stems from the analysis of the influencing factors
discussed in Section 5.1 above. Note that not all criteria need to be fulfilled to choose
an instance of a facet.

5.2.1 Time Facet: Linear versus Iterative

The time facet deals with the organization of RE activities on a time scale. We
distinguish between linear and iterative processes.

In a linear RE process, requirements are specified up front in a single phase of the
process. The idea is to produce a comprehensive requirements specification that
requires no or only little adaptation or few changes during the design and
implementation of the system. Creating a comprehensive requirements specification
up front calls for a comprehensive process. Thus, in most cases, linear RE processes
are heavyweight processes.

Criteria for choosing a linear RE process:

 The development process for the system is plan-driven and mostly linear.

 The stakeholders are available, know their requirements, and can specify

them up front.

 A comprehensive requirements specification is required as a contractual

basis for outsourcing or tendering the design and implementation of the

system.

 Regulatory authorities require a comprehensive, formally released

requirements specification at an early stage of the development.

In an iterative RE process, requirements are specified incrementally, starting with
general goals and some initial requirements and then adding or modifying
requirements in every iteration. The idea is to intertwine the specification of
requirements with the design and implementation of the system. Due to short
feedback loops and the ability to accommodate change or things forgotten in later
iterations, iterative RE processes can be lightweight processes.

Criteria for choosing an iterative RE process:

 The development process for the system is iterative and agile.

 Many requirements are not known up front but will emerge and evolve

during the development of the system.

 Stakeholders are available such that short feedback loops can be established

as a means of mitigating the risk of developing the wrong system.

 The duration of the development allows for more than just one or two

iterations.

 The ability to change requirements easily is important.

5.2.2 Purpose Facet: Prescriptive versus Explorative

The purpose facet deals with the purpose and role of the requirements in the
development of a system. We distinguish between prescriptive and explorative RE
processes.

Linear

Iterative

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 104/139

In a prescriptive RE process, the requirements specification constitutes a contract: all
requirements are binding and must be implemented. The idea is to create a
requirements specification that can be implemented with no or little further
interaction between stakeholders and developers.

Criteria for choosing a prescriptive RE process:

 The customer requires a fixed contract for system development, often with

fixed functionality, scope, price, and deadline.

 Functionality and scope take precedence over cost and deadlines.

 The development of the specified system may be tendered or outsourced.

In an explorative RE process, only the goals are known a priori, while the concrete
requirements have to be elicited. The idea is that requirements are frequently not
known a priori but have to be explored.

Criteria for choosing an explorative RE process:

 Stakeholders initially have only a vague idea about their requirements.

 Stakeholders are strongly involved and provide continuous feedback.

 Deadlines and cost take precedence over functionality and scope.

 The customer is satisfied with a framework contract about goals, resources,

and the price to be paid for a given period of time or number of iterations.

 It is not clear a priori which requirements shall actually be implemented and

in which order they will be implemented.

5.2.3 Target Facet: Customer-Specific versus Market-Oriented

The target facet considers the development type: which kind of development do we
target with the RE process? On an elementary level, we distinguish between
customer-specific and market-oriented RE processes.

In a customer-specific RE process, the system is ordered by a customer and developed
by a supplier for this customer. Note that the supplier and the customer may be part
of the same organization. The idea is that the RE process reflects the customer-
supplier relationship.

Criteria for choosing a customer-specific RE process:

 The system will be used mainly by the organization that has ordered the

system and pays for its development.

 The important stakeholders are mainly associated with the customer’s

organization.

 Individual persons can be identified for the stakeholder roles.

 The customer wants a requirements specification that can serve as a

contract.

In a market-oriented RE process, the system is developed as a product or service for a
market, targeting specific user segments. The idea is that the organization that
develops the system also drives the RE process.

Criteria for choosing a market-oriented RE process:

 The developing organization or one of its clients intends to sell the system as

a product or service in some market segment.

Prescriptive

Explorative

Customer-specific

Market-oriented

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 105/139

 Prospective users are not individually identifiable.

 The Requirements Engineers have to design the requirements so that they

match the envisaged needs of the targeted users.

 Product owners, marketing people, digital designers, and system architects

are primary stakeholders.

5.2.4 Hints and Caveats

It is important to note that the criteria given above are heuristics. They should not be
considered as a set fixed rules that always apply. For example, outsourcing the
development of the system is done preferably with a prescriptive RE process rather
than with an explorative one. This is because the contract between the customer and
the supplier is typically based on a comprehensive requirements specification.
However, it is also possible to negotiate an outsourcing contract based on an
explorative RE process.

There may be prerequisites for choosing certain instances of process facets or the
choice may entail consequences that have to be considered. Here are some examples:

 Linear RE processes work only if a sophisticated process for changing

requirements is in place.

 Linear RE processes imply long feedback loops: it may take months or even

years from writing a requirement until its effects are observed in the

implemented system. To mitigate the risk of developing the wrong system,

requirements must be validated intensively when using a linear RE process.

 In a market-oriented process, feedback from potential users is the only

means of validating whether the product will actually satisfy the needs of the

user segment targeted.

 In an agile setting, an iterative and explorative RE process fits best.

Iterations have a fixed length (typically 2-6 weeks). The product owner plays

a core role in the RE process, coordinating the stakeholders, organizing the

RE work products, and communicating the requirements to the development

team.

The three facets mentioned above are not fully independent: the choice made for one
facet may influence what can or should be chosen in other ones. Here are some
examples:

 Linear and prescriptive are frequently chosen together, which means that

when Requirements Engineers decide on a linear RE process, they typically

decide on a process that is both linear and prescriptive.

 Explorative RE processes are typically also iterative processes (and vice

versa).

 A market-oriented RE process does not combine well with a linear and

prescriptive process.

5.2.5 Further Considerations

The degree to which an RE process must be established and followed, as well as the
volume of requirements work products to be produced in this process, depends on
the degree of shared understanding and also on the criticality of the system.

Heuristics, no rules

Prerequisites and

consequences

Mutual influence

Shared understanding

and criticality

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 106/139

The better the shared understanding and the lower the criticality, the simpler and
more lightweight the RE process can be.

When there is little time and budget available for RE, the resources available must be
used carefully. Choosing an iterative and explorative process helps. Furthermore, the
process should focus on identifying and dealing with those requirements that are
critical for the success of the system.

Finally, the RE process should fit the experience of the Requirements Engineers. The
lower their skills and experience, the simpler the RE process should be made—it does
not make sense to define a sophisticated process when the people involved cannot
enact this process properly.

5.3 Configuring a Requirements Engineering Process

In a concrete system development context, Requirements Engineers or the person(s)
responsible for RE have to choose the RE process to be applied. We recommend
analyzing the influencing factors (see Section 5.1) first and then selecting a suitable
combination of the process facets described in Section 5.2.

5.3.1 Typical Combinations of Facets

Three combinations of facets (or variants thereof) frequently occur in practice
[Glin2019]. In the following, we briefly describe each of them and characterize them
in terms of their main application case, typical work products, and typical information
flow. Furthermore, we provide an example. Figure 5.2 shows the three typical process
configurations in the space of the three facets.

Figure 5.2 Three typical RE process configurations and their relationship to the three facets

Time and budget

Experience of

Requirements Engineers

Process configurations

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 107/139

Participatory RE Process: Iterative & Explorative & Customer-Specific

A participatory RE process is typically chosen in agile settings when there is a
customer who orders a system and a development team that designs and implements
it. The focus is on exploring the requirements in a series of iterations in close
collaboration between the stakeholders on the customer side, the Requirements
Engineers, and the development team.

Main application case: Supplier and customer collaborate closely; stakeholders
are strongly involved in both the RE and the development
processes.

Typical work products: Product backlog with user stories and/or task descrip-
tions, vision, prototypes

Typical information flow: Continuous interaction between stakeholders, product
owners, Requirements Engineers, and developers

Example: In an insurance company, the business unit that sells corporate insurances
to small and medium-sized enterprises has an idea about a new product for insuring
customers against the damage incurred by a hacker attack. They contract the
corporate IT unit of the company to form a development team with the task of
designing and developing a new application that can handle the new insurance
product within the existing insurance sales support system. Also, the existing
insurance contract management system needs to be adapted accordingly. Beyond
some initial requirements, the contracting business unit has no clear idea how the
new product should look and how it should be supported by the corporate IT systems.
Corporate IT adopted agile development for all their projects some years ago.

In this situation, a participatory RE process is appropriate. It fits the overall agile
process that corporate IT will employ to develop the new system and adapt the
existing ones. Stakeholders from the business unit and Requirements Engineers from
corporate IT can jointly elicit the requirements for the new insurance product. As the
process is iterative, the development team can develop a prototypical minimum
marketable product that helps the management of the business unit to decide
whether or not to include the product envisaged in their portfolio or discard the idea.
There is a clear customer-supplier relationship between the business unit and
corporate IT, so a customer-oriented RE process fits.

Contractual RE Process: Typically Linear & Prescriptive & Customer-Specific

A contractual RE process is typically chosen when the development of a system is
tendered and outsourced to a provider with a contract based on a comprehensive
requirements specification. It is also a suitable process for RE in large system
development projects that apply a waterfall-style development process.

Main application case: The requirements specification constitutes the
contractual basis for the development of a system by
people not involved in the specification and with little
stakeholder interaction after the requirements phase.

Typical work products: Classic system requirements specification, consisting of
textual requirements and models

Typical information flow: Primarily from stakeholders to Requirements Engineers

Participatory

Mostly agile

For a customer

Example: Supporting a

new insurance product

Contractual

Up-front RE

Waterfall-style

For a customer

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 108/139

Example: A car manufacturer is developing a new car platform, from which a family
of car models will be derived. A major design decision for the new platform is to get
rid of the dozens of electronic control units (ECUs) currently used in the cars and
replace them with a single control computer that runs a stack of driving control and
driving assistance applications. The goal is to save hardware costs, get rid of
unwanted interactions between ECUs, and reduce both time and effort for performing
updates of the software. Engineers who are responsible for the electronic systems of
the new platform have written a customer requirements specification. The company
has contracted a large manufacturer of automotive control systems to create a system
requirements specification for the new centralized car control system. Later, the car
manufacturer will tender the design and implementation of the system based on that
specification. The manufacturer will require the implementation to be performed in
several iterations in order to ease testing and integration of the system with the new
car platform.

In this situation, a contractual RE process is appropriate. The overall process is linear:
the system will be designed and implemented only after the requirements
specification has been completed. The fact that the implementation will be iterative
does not impact the RE process. Depending on the quality of the existing customer
requirements specification and the availability of the stakeholders at the car
manufacturer, a linear or an iterative RE process should be chosen.

Obviously, a customer-oriented RE process is needed. The existence of a customer
requirements specification and the fact that the system requirements specification
will be used to tender the design and implementation of the system call for a
prescriptive RE process.

Product-Oriented RE Process: Iterative & Explorative & Market-Oriented

A product-oriented RE process is typically chosen when an organization is developing
a system as a product or service for the market. In most cases, a product-oriented RE
process comes together with an agile product development process. The product
owner and digital designers play major roles in this process: they strongly influence
and shape the product.

Main application case: An organization specifies and develops software in order
to sell or distribute it as a product or service

Typical work products: Product backlog with user stories and/or task descrip-
tions, vision, prototypes, user feedback

Typical information flow: Interaction between product owner, marketing,
Requirements Engineers, digital designers, and
developers plus feedback from customers/users

Example: A media company tasks its internal IT with a total renewal of the mobile
news app that the company sells to subscribers (with some content being freely
accessible). From user feedback, the company maintains a long log of customer
criticism and improvement suggestions. In particular, many users criticize the
existing app for not being responsive enough, for having bad support for reporting
problems and suggestions, and for not supporting two-finger zooming of text or
images. The marketing department of the company also perceives the layout of the
app to be outdated. They predict that with a fresh layout, more subscribers could be
gained. The CEO of the company has decided that the IT department shall collaborate
with an external design agency for the visual appearance of the app. The management
of the media company wants a minimal product version as a proof of concept, and
then new intermediate versions every three weeks that can be reviewed by the
marketing department and the company’s board of executives.

Example: Specifying a

new control system in

the automotive industry

Product-oriented

Mostly agile

For the market

Example: Total renewal

of a mobile news app

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 109/139

In this situation, a product-oriented RE process fits best. Although there is a
customer-supplier relationship between the management of the company and its
internal IT department, the focus is clearly on creating a renewed product in the
segment of mobile news applications. The RE process needs to be explorative, as the
requirements beyond the information in the existing log of user feedback are not
clear. The overall development process has to be iterative according to the decision
of the management of the company. As the requirements need to be explored, an
iterative RE process is the best fit here.

5.3.2 Other RE Processes

The three combinations described above cover many of the situations that occur in
practice. However, there may be situations where none of the aforementioned
process configurations fit. For example, regulatory constraints may impose the use of
a process that conforms to a given standard, such as ISO/IEC/IEEE 29148 [ISO29148].
In such a case, the RE process has to be created by process experts from scratch or
one of the aforementioned configurations has to be tailored so that it is adapted to the
given situation.

5.3.3 How to Configure RE Processes

We recommend a five-step procedure for configuring an RE process.

1. Analyze the influencing factors. Analyze your situation with respect to the list of
influencing factors from Section 5.1.

2. Assess the facet criteria. Based on the analysis from step 1, go through the list of
facet selection criteria given in Section 5.2. You may assign each criterion a value on
a five-point scale (––, –, 0, +, ++).

3. Configure. If the criteria analysis yields a clear result with respect to the three
typical configurations mentioned above, choose that configuration. Otherwise, choose
a different process tailoring, guided by the general goal of mitigating the risk of
developing the wrong system. For example, imagine a situation where the customer
demands a system requirements specification to be created up front, which calls for
a linear, prescriptive RE process. However, in your first meetings with the customer,
you have noticed that for an important subsystem, the customer has no clear idea
what to build, which calls for an explorative RE process. A potential solution could be
to choose a contractual RE process as the general RE process framework but create a
subproject that stepwise elicits the requirements for that important subsystem,
creating prototypes in two or three iterations (guided by a participatory RE
subprocess), and then feed the results into the system requirements specification.

4. Determine work products. Based on your analysis and process configuration, define
the main RE work products that will be produced. Make sure that the RE work
products are aligned with the work products of the overall development process.

5. Select appropriate practices. For the tasks to be performed—for example, elicitation
of requirements—select the practices that fit best in the given situation. Many of these
practices, including hints about where and when to apply them, are presented in
Chapters 2, 4, and 6 of this handbook.

There is no proven, one-size-fits-all RE process. Based on an analysis of influencing
factors, a specific RE process needs to be tailored for every RE undertaking. A simple
way of tailoring is configuring an RE process from a set of process facets.

Special cases need

special RE processes

A five-step configuration

procedure

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 110/139

5.4 Further Reading

Armour [Armo2004] and Reinertsen [Rein1997], [Rein2009] provide general
thoughts on processes and information flows in processes.

Although the textbook of Robertson and Robertson [RoRo2012] is entitled “Mastering
the Requirements Process,” this is a general textbook on all aspects of RE.

Wiegers and Beatty [WiBe2013] provide a chapter about improving RE processes.
The book by Sommerville and Sawyer [SoSa1998] contains a collection of good
practices to be used in the framework of RE processes.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 111/139

6. Management Practices for Requirements

Requirements are not carved in stone, eternally present from past to future; they are
alive! They are born through elicitation, grow up through documentation, and are
shaped through validation. As adults, they go to work through implementation and
after a—hopefully—long and prosperous life in operation, they retire in oblivion.
Throughout their life cycle, their parents, the Requirements Engineers, take care of
them. We nurse them in their infancy, teach them in their youth, escort them in their
relationships, and help them find a good job in a healthy system. That is what we call
requirements management.

Of course, there are better, more formal, definitions of requirements management.
The ISO/IEC/IEEE 29148:2018 [ISO29148] standard defines requirements
management as "activities that identify, document, maintain, communicate, trace and
track requirements throughout the life cycle of a system, product or service.". In the
CPRE glossary [Glin2020], requirements management is defined as “The process of
managing existing requirements and requirements related work products, including the
storing, changing and tracing of requirements.”. The CPRE glossary also tells us that
requirements management is an integral part of Requirements Engineering: “The
systematic and disciplined approach to the specification and management of
requirements with the goal of …”.

Requirements management can occur at different levels:

 The individual requirements

 The work products that contain these requirements

 The system related to the work products and the requirements contained

therein

In practice, requirements management is primarily performed at the work product
level. Usually a work product contains several individual requirements (e.g. an
external interface description), while other work products contain only a single
requirement (e.g. a single user story in an agile project) or they represent the whole
set of requirements for a system (e.g. software requirements specification). Be aware
that all work products of all three levels must be managed, and make sure that you
know the relationships between them.

The text above outlines the what of requirements management. The rest of this
chapter is devoted to the how: all kinds of practices that are applicable to make
requirements management work. Before we dive into the details of requirements
management, let us consider some leading principles for making it work. If you want
to manage something, you must be able to recognize it, to store it, and to find it again.
Therefore, unique identification, an appropriate degree of standardization, avoidance
of redundancy, a central repository, and managed access are a must.

In Section 6.1, we take a short look at situations that influence the value, importance,
and effort involved in requirements management.

Section 6.2 follows the requirements in their life cycle as part of work products that
Requirements Engineers and other IT staff produce and use while developing,
implementing, and operating an IT system.

During the lifecycle of a requirement, multiple versions of work products (and the
requirements they contain) are created, starting with an early 0.1 draft that, after a
series of major and minor changes, evolves into, say, a 3.2 final version. Version
control is discussed in Section 6.3.

Requirements

management occurs at

different levels

What versus how

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 112/139

When developing and using IT systems, it is impractical to deal with all requirements
on an individual basis. Therefore, coherent sets of requirements are recognized as
configurations and baselines, as explained in Section 6.4.

In order to handle work products and requirements efficiently, we must be able to
identify them and collect data about them. That is the topic of Section 6.5.

Section 6.6 looks at requirements traceability. Traceability is an especially important
quality characteristic of requirements, as you may have already understood when
reading the definitions of requirements management above. Without traceability, it is
impossible to link the actual behavior of a system to the original demands of the
stakeholders.

Section 6.7 deals with the changes to requirements that occur during their lifetime. In
the first phases of their existence, changes can be frequent, but after validation,
requirements should be stable. However, changes will still occur. To apply them in an
orderly manner, a defined process for handling change should be in place.

By nature, requirements differ in importance and value. Usually, resources to
elaborate them are limited, so not every requirement will make it to implementation.
This means that stakeholders will have to decide when a certain requirement will be
implemented or even whether or not it will be implemented at all. Prioritization,
described in Section 6.8, can underpin this decision.

6.1 What is Requirements Management?

In the introduction, we have already seen that requirements management means the
management of existing requirements and requirements-related work products,
including storing, changing, and tracing the requirements. But why manage them at
all?

We manage requirements because they are living things; they are created, used,
updated, and deleted again during both their development and operation. And during
this whole life cycle, we must make sure that all parties involved have access to the
correct versions of all requirements that are relevant to them. If we do not manage
requirements properly, we face the risk that some parties may overlook
requirements, stick to outdated requirements, work with wrong versions, overlook
relationships, and so on. This can seriously hinder the efficiency and effectiveness of
system development and usage. In other words: the value of proper requirements
management lies in the improved efficiency and effectiveness of a system.

This means that the value of requirements management cannot be separated from the
value of the system in question and its context. In practice, we can see huge
differences in the importance and level of requirements management and the effort
involved [Rupp2014], ranging from an informal subsidiary task of a Requirements
Engineer with a spreadsheet, to a full-time function of a dedicated requirements
manager with a tool-supported database of requirements.

More thorough requirements management is needed with larger numbers of require-
ments, stakeholders, and developers, with a longer expected lifetime, more changes
or higher quality demands on the system, and with a more complex development
process, more strict standards, norms, and regulations, including the need for a
detailed audit trail.

Value of requirements

management

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 113/139

Often, we see that requirements management is somewhat neglected at the beginning
of a project, when a small team is working on an obvious set of high-level
requirements. Later on, complexity increases and the team loses the overview,
resulting in quality problems and reduced efficiency. Then, a lot of effort has to be
spent on catching up with the required level of control. It is more efficient to invest
some effort right from the start of a project to set up the requirements management
resources and processes with the expected demands at the end in mind.

6.2 Life Cycle Management

As stated in the introduction, requirements and work products that contain
requirements have a life. We see them being created, elaborated, validated,
consolidated, implemented, used, changed, maintained, reworked, refactored, retired,
archived, and/or deleted. That is what we mean by their life cycle: during its life, a
requirement can be in a limited number of states and can show a limited number of
state transitions based on explicit events in the context. Figure 6.1 shows a simplified
statechart as a model for the life cycle of a single requirement (overview only, state
transitions are not shown; for instance, the transition from the composite state Under
development to In production may be triggered by a go-live decision from the product
owner).

Figure 6.1 Simplified statechart of a requirements life cycle

A complicating factor is that work products and individual requirements have their
own different life cycles that only partially overlap. As an example, think of a work
product definition study in the state under change; this does not necessarily mean that
all requirements contained in the work product have to be changed. And for the same
definition study, the state implemented makes no sense; only some requirements in it
will be implemented—or better: certain code, based on these requirements.

Life cycle management

of requirements and

work products

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 114/139

Another complicating factor may be that in practice, the view of the life cycle of
requirements is different for different roles. For you as a Requirements Engineer, to
trace your work you are interested in different states to the project manager, and
other states again compared to the product manager or a change manager: in the
diagram above, your interest might end at validated, while for the project manager, it
only starts at documented.

Requirements Engineers actively manage the life cycle of their work products. Life
cycle management implies:

 Defining life cycle models for your work products and the requirements

contained in them with

o The states that a work product or requirement can take

o The transitions allowed between these states

o The events that trigger the transition from one state to another

 Ensuring that only explicitly allowed transitions occur

 Recording the actual states that the work products and requirements take

 Recording the actual transitions that occur

 Reporting on these states and transitions

In simple words: make sure that you know the state that your requirements were in,
are in, and will take, how they can change, and why this all happens.

For instance, as a Requirements Engineer, you could be asked to report who approved
which version of a requirement to be released as input for the coding phase. Keeping
track of requirements states in their life cycle can also be useful for building
dashboards and reporting on the progress of a project. It can be a good way to
organize work and identify which requirements to work on first.

The state of a work product under life cycle management is often recorded in an
attribute (see Section 6.5). It may also be useful to document the beginning and the
end date of that state in attributes. In agile projects, the state of a work product (item)
can be derived from its position in the product backlog, task backlog, and/or on the
task board. Also, meeting the criteria of the definition of ready and the definition of
done can give relevant information, as meeting these criteria actually means attaining
a next state.

The thoroughness and level of detail of the life cycle management should be tailored
to the needs of the customer, the project, and the system. For instance, the states
under development, in production, and archived might be sufficient. In complex or
critical projects, you may need a far more detailed model of the states, strict
procedures about state transitions, and an audit trail that shows what happened
during the project.

6.3 Version Control

It is common for both, work products and individual requirements as part of a work
product, to undergo certain changes during their life cycle (see Section 6.7 for more
information on handling these changes). After every change, the work product is
different to what it was before: it has become a new version.

Life cycle management

needs to be actively

managed

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 115/139

We want to control the versions of these work products for two reasons:

 Sometimes changes go wrong. After a while, defects are found, or the intended

benefits are not realized. In such a case, we may implement new changes in a

next version but we can also decide to go back to a previous version and

continue from there. Or maybe, on second thought, we just prefer the earlier

version after all.

 We want to know the history of the work product, understand its evolution

right from its origin up to its present situation. This may help us when we have

to decide on future changes, or just answer questions on why the current work

product is what it is.

Version control requires three measures to be in place:

 An identification of each version, to distinguish between the different versions

of a work product. This is the version number, often supplemented with a

version date.

 A clear description of each change. You must be able to tell—and

understand—the difference between a certain version and its predecessor.

This change description must be clearly linked to the version number.

 A strict policy on the storage of versions, enabling you to locate and retrieve

old versions. Unless storage limitations dictate otherwise, you should

preserve all previous versions of all your work products, otherwise you may

not be able to restore a version if you need it. On the other hand, unlimited

storage will rarely be the case, so it is wise to also have a policy for archiving

and cleaning up work products that are no longer used.

Usually, a work product contains multiple requirements. If a single requirement in
that work product changes, both that requirement and the work product should get a
new version number, while the unchanged requirements in that work product keep
their old version number. This might soon become very confusing. A practical solution
may be to do version numbering at the work product level only and let all
requirements in it inherit the version number and the change history of the work
product.

Version numbers are typically composed of (at least) two parts:

 Version. In principle, the version starts at zero as long as the work product is

under development. When it is formally approved, released, and/or launched,

we assign it version one. After that, the version is increased only for major,

substantive updates.

 Increment. This mostly starts at one and is incremented with every (externally

visible) change, on the content side or often only textual or editorial. An

additional sub-increment may be used for correction of typos only. The

increment nine is sometimes used to denote a final version just before

approval or release.

A new version number is assigned with each formal change.

Reasons for version

control of work products

Measures for version

control

Version numbers

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 116/139

Often, a change in the life cycle state of a work product is not considered a reason for
incrementing the version number, unless it is accompanied by a change in content or
text. If, for instance, a requirement receives the state validated and the version
number 1.0 after approval, there is no need to change this version number if the state
changes to under construction and subsequently to implemented. The state can finally
end in archived but still keep the same version number 1.0.

6.4 Configurations and Baselines

Suppose you preserve, as advised above, all versions of all requirements that you
develop during a project. You will then have an ever-expanding database filled with
requirements and you will start to lose the overview. One day, your client comes to
your desk and asks: “We have implemented your system at all our branches. Now
there seems to be a problem with the calculations in our Barcelona office. Can you tell
me what version of the calculation requirements they use there?” If you cannot
answer that question, you will wish that you had paid more attention to configuration
management.

So, what is a configuration? You will find a definition in the CPRE glossary [Glin2020]
but in short, for a Requirements Engineer, a configuration is a consistent set of
logically related work products that contain requirements. We select this set with a
specific purpose, usually to make clear which requirements are or were valid in a
certain situation.

This sets the following properties for a correct configuration:

 Logically connected. The set of requirements in the configuration belongs

together in view of a certain goal.

 Consistent. The set of requirements has no internal conflicts and can be

integrated in a system.

 Unique. Both the configuration itself and its constituent requirements are

clearly and uniquely identified.

 Unchangeable. The configuration is composed of selected requirements, each

with a specific version that will never be changed in this configuration.

 Basis for reset. The configuration allows fallback to a previous configuration if

any undesired changes appear to have occurred.

A configuration is documented as a work product, with a unique identification, a state,
and a version number and date, just like any other work product. However, because
a configuration is by definition unchangeable, it will always have only one version
(e.g., 1.0).

A configuration always has two dimensions [CoWe1998]:

 The product dimension. This indicates which requirements are included in

this specific configuration. Sometimes, a configuration will contain all

available requirements but usually, it is a certain selection—for instance, all

requirements that are implemented in the French release of a system. The

British release of the same system might then have a different configuration.

Configuration

Properties for

Configurations

Dimensions of

Configurations

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 117/139

 The version dimension. In a specific configuration, every selected requirement

is present in exactly one, and only one, version. It might be the latest version

or an earlier one, depending on the purpose of the configuration itself. As soon

as even a single different version of a single requirement is selected, this is a

new configuration. Imagine a system for which a new release will be

implemented with some requirements in a higher version: this new release

will then have a different configuration.

Figure 6.2 gives another example of different configurations consisting of specific sets
of versions of requirements.

Figure 6.2 Example of configurations

The figure above shows an example of different configurations of a certain system. It

shows a collection of nine requirements. Some of them are still in the early stages of

development—e.g., requirement 6 with version v0.1. Other requirements have had more

versions—for instance, requirement 1, which is finalized and has already had a major

update, so is now version v2.0.

The left-hand picture shows the configuration that is currently in production. It consists

of R1 v2.0, R2 v1.0, R3 v1.2 (this requirement had two minor updates after

implementation), R5 v2.0, R7 v1.0, and R9 v1.0. R4, R6, and R8, being under development,

are not present in this configuration, nor are the new versions of R7 and R9.

The right-hand picture shows the configuration that, at the same time, is present in the

system test environment. Some requirements (R1, R2) are the same, some are no longer

present (R3, R5), the requirements under development (R4, R6, and R8) are included here,

and two requirements (R7 and R9) are present in a higher version than in the

configuration of the production environment.

In many projects some configurations are treated in a special way: these
configurations are called baselines. A baseline is a stable, validated, and change-
controlled configuration that marks a milestone or another kind of resting point in the
project. An example can be the configuration at the end of the design phase, just
before starting the coding phase, or the configuration that is valid at the go-live of a
certain release.

Baseline

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 118/139

The sprint backlog in an agile project serves as the baseline at the start of the next
iteration. Baselines are useful for planning purposes as they represent a stable
starting point for a next phase. They are often frozen and set aside as an anchor in the
hectic life of a project. If something goes terribly wrong in the project, the team can
perform a roll-back to the situation of the baseline and restart from there.

For the Requirements Engineer, it is mainly the configuration of work products
containing requirements that is important. But in practice, the configuration within a
project has a much broader scope, containing selected versions of the work products
of all team members, such as requirements, designs, code and test cases. In complex
projects, configuration management can be a full-time job, performed with dedicated
tooling.

6.5 Attributes and Views

As a Requirements Engineer, your output consists of all kinds of work products
containing requirements. These requirements will have to be managed, otherwise
you and your team will quickly lose the overview. To manage the requirements, you
have to collect and maintain data about them—metadata, data about data. Metadata
makes work products tangible, manageable; through metadata, you can provide and
obtain information about the requirements and answer questions that are relevant
during and after the project or product life cycle. Think of questions like "Which
requirements are planned for the next release?" or "How much effort is this release likely
to take?" or “How many requirements have a high priority?”

When considering the requirements as entities about which information is required,
the characteristics of these requirements are called attributes. In this chapter, we
have already seen some common attributes, such as the unique identification, version
number, state, several dates. The attributes to be defined for the requirements
depend on the information needs of the stakeholders of the project and the system.
At the start of a project, an attribute schema should be set that enables the
Requirements Engineer to fulfill these needs.

A good starting point can be found in relevant standards. The ISO standard
[ISO29148] mentions:

 Identification. Each requirement should have a unique, immutable identifier,

such as a number, name, mnemonic. Without a proper identification,

requirements management is impossible.

 Stakeholder priority. The (agreed) priority of the requirement from the

viewpoint of the stakeholders. See Section 6.8 for information on how to

determine this priority.

 Dependency. Sometimes, there is a dependency between requirements. This

may mean that a low-priority requirement should be implemented first

because another, high-priority requirement depends on it.

 Risk. This is about the potential that the implementation of the requirement

will lead to problems, such as damage, extra costs, delays, legal claims. By

nature, this is an estimate, to be based on consensus among stakeholders.

 Source. What is the origin of the requirement, where did it come from? You

may need this information for validation, conflict resolution, modification, or

deletion.

 Rationale. The rationale gives you the reason why the requirement is needed,

the objectives of the stakeholders that should be fulfilled by it.

Not only requirements

Attributes

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 119/139

 Difficulty. This is an estimate of the effort needed to implement the

requirement. It is needed for project planning and estimation.

 Type. This attribute indicates whether the requirement is a functional or a

quality requirement or a constraint.

There are many ways to store this information. It may be contained in documents or
stored in a spreadsheet or database, with the requirements as rows and their
attributes as columns. In agile settings, requirements may be recorded on story cards,
where the rubrics on the card are the attributes. As discussed in Chapter 7,
requirements management tools should offer functionality for storing data about
requirements and also reporting on them.

Attributes allow you to provide information about your work products and the
requirements contained therein. The simplest way to do so is to produce a report with
all the data on all the versions of all requirements. For anything but the simplest
system, such a report will be useless as nobody will be able to oversee all the
information because it is overwhelmingly complex. Therefore, you should adjust your
reports based on the information needs of your target audiences. This is done by using
views [Glin2020]. A view is an (often predefined) way to filter and sort the data on
your work products, resulting in a report that shows precisely what the audience
needs, no more, no less. A view is defined with the explicit purpose of delivering
relevant information for a specific target group.

We discern three types of views:

 Selective views. These views give information on a deliberate selection of the

requirements instead of all requirements. For example, a view on only the

latest versions of the requirements, or all requirements with the state

validated, or on the requirements with stakeholder priority high; the focus

might be on a subsystem, or on the contrary to provide an abstract overview

of the system through its high-level requirements only.

 Projective views. A projective view shows a selection from all data (attributes)

of the requirements—for example, only the identification, the version

number, and the name.

 Aggregating views. In an aggregating view, you will find summaries, totals, or

averages, calculated from a set of requirements. An example would be the

total number of requirements per department: e.g., 4 from Sales, 5 from

Logistics.

Figure 6.3 gives an example of these types of views.

Views

Types of views

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 120/139

Figure 6.3 Different types of views

In most cases, a combination of views is used—for instance, if you want to provide a
list with the IDs, version numbers, names, and types (= projective) of all the
requirements for the Sales department (= selective).

6.6 Traceability

Throughout this handbook, we have mentioned the topic of traceability [GoFi1994].
Without proper traceability, Requirements Engineering is hardly feasible, as you
cannot do the following:

 Provide evidence that a certain requirement is satisfied

 Prove that a requirement has been implemented and by what means

 Show product compliance with applicable laws and standards

 Look for missing work products (e.g., find out whether test cases exist for all

requirements)

 Analyze the effects of a change to requirements (see Section 6.7)

In many cases, especially for safety-critical systems, process standards even explicitly
demand the implementation of traceability.

There are three types of questions that can be answered with the aid of traceability
(see also Figure 6.4):

 Backward traceability: What was the origin of a certain requirement? Where

was it found? Which sources (stakeholders, documents, other systems) were

analyzed during elicitation?

Traceability

Types of traceability

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 121/139

Backward traceability is as well-known as pre-requirements specification

traceability.

 Forward traceability: Where is this requirement used? Which deliverables

(coded modules, test cases, procedures, manuals) are based on it?

Forward traceability is as well-known as post-requirements specification

traceability.

 Traceability between requirements: Do other requirements depend on this

requirement or vice versa (e.g., quality requirements related to a functional

requirement)? Is the requirement a refinement of a higher-level requirement

(e.g., an epic refined in a number of user stories, a user story detailed with a

number of acceptance criteria)? How are they related?

Figure 6.4 Traceability types

There are several ways of documenting traceability. Often, this is done implicitly—for
instance, by applying document structures, standard templates, or naming
conventions. If you identify all your requirements with the code Req-xxx-nnn, where
xxx stands for the department that requested the requirement, everybody will
understand that Req-sal-012 is a requirement for the Sales department (for backward
traceability). If you publish a document listing all the requirements that will be
implemented in the release of July 1st, you are providing implicit forward traceability
information. And if you write a document with a dedicated section on, e.g., price
calculations, that could be an example of traceability between requirements. Another
example could be a high-level model and a textual description of detailed
requirements related to it.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 122/139

In more complex projects, traceability should (also) be documented explicitly. For
explicit traceability, you document the relationship between work products based on
their unique identification. This can be done in various forms [HuJD2011]:

 Making use of specific attributes such as Source suggested by the ISO standard

[ISO29148]

 In documents, adding references to predecessor documents, other work

products, or individual requirements

 Developing a traceability matrix in a spreadsheet, or a database table (see an

example in Table 6.1 below)

 In textual documentation, using Wiki-style hyperlinks

 Visualizing traceability relationships in a trace graph (Figure 6.4 is a

simplified form of such a graph)

 In many cases, a requirements management or configuration management

tool (see Chapter 7) provides functionality to support traceability. Managing

traceability in a substantial project can be complicated, especially if you also

have to take versioning into account. In such a case, good tooling is

indispensable.

Table 6.1 Example of a traceability matrix

Source R1 R2 R3 R4 R5 R6 R7

Interview Mrs. Smith
06/08

X X X

Summary
questionnaire May 12

X X X X

Field observation
report 07/03

 X X X

Company regulations
version 17.a.02

 X X X

Documentation API
HRM system v3.0.2.a

X X X

6.7 Handling Change

“Principle 2: Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.” [BeeA2001].
The founding fathers of the agile movement were crystal clear on this: requirement
changes will always occur, whether you like them or not. Many people do not like
changes at all, because every change is a risk, a threat to the stability of the project
and the system.

However, changing a requirement is not a stand-alone event: it is triggered by
changes in the system context, by new insights of the stakeholders, by behavior of
competitors, and so on; a law becomes effective, adding a new constraint to the
system; due to growing market demand, the performance of the system has to be
improved; a competitor system is launched with some delighter features that your
client wants too. A change should thus be seen as a chance to get a better system, to
provide more value to the users.

Documenting the

relationship between

work products

Handling Change

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 123/139

However, regardless of the situation, every change is also a risk. It can introduce
defects, leading to system failure. It can delay the progress of the project. It can take
more effort and money than was calculated before. The users may not like it and
refuse to work with it. In short, things can go wrong and disturb a previously stable
project or system. But that does not mean that changes are bad and should be avoided;
it does mean that all changes must be handled carefully to get optimal value at
acceptable costs with minimal risk.

In the literature on IT service management (see [Axelos2019]), change enablement is
described as one of the core practices. This practice ensures that changes are
implemented effectively, safely, and in a timely manner in order to meet stakeholders’
expectations. The practice balances effectiveness, throughput, compliance, and risk
control. It focuses on three aspects:

 Ensuring that all risks have been accurately assessed

 Authorizing changes to proceed

 Managing the change implementation

Change enablement implies that an organization assigns a change authority to decide
on the changes and defines a process for handling them. See Figure 6.5 for an outline
of this process. These measures are usually tuned to the development approach and
the point in time where a change occurs.

Figure 6.5 Change enablement process

As long as a requirement is in a draft state, the author has the authority to change it
and no strict process is followed.

As soon as a requirement is released for further use in the project, the author is no
longer free to decide, as every change will have an impact on other work products
based on this requirement. Before deciding whether a change should be implemented,
an impact analysis should be performed to clarify the efforts and risks of the change.
This is where traceability is indispensable. In a linear development approach, the
change authority will often be assigned to project management, a steering committee,
or a Change Control Board, and a process is followed, with a formal decision on the
change and the planning of its implementation. In an iterative development approach,
the change authority usually lies with the product owner, who decides on the change
and adds an accepted change to the product backlog as a new item (work product).
The further implementation is then handled just like any other product backlog item.

Once a requirement is implemented in an operational system, an even stricter process
should be followed, as every change will now influence users and business processes.

Change enablement

Change authority

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 124/139

Here, a distinction is often made between standard (low-risk, well understood, and
pre-authorized, e.g., a change to the VAT percentage), normal (based on a formal
Request for Change, scheduled, assessed, and authorized, e.g., a change to a price
calculation algorithm), and emergency changes (to be implemented as soon as
possible, e.g., to resolve an incident—but that seldomly involves a change of
requirements). Usually, the change authority lies with a Change Advisory Board
[Math2019]; in an iterative approach like DevOps, a change may be authorized by a
release manager.

6.8 Prioritization

Requirements themselves are just concepts in the minds of people. They bring value
only when they are implemented in an operational system. This implementation takes
effort, time, money, and attention. In most cases, these resources are limited, which
means that not all requirements can be implemented, at least not at the same time.
This in turn means that the stakeholders have to decide which requirements should
come first and which could be implemented later (or not at all). In other words:
prioritization [Wieg1999].

The priority of a requirement is defined as the level of importance assigned to it
according to certain criteria [Glin2020]. Consequently, you first have to determine
what criteria should be used to assess the requirements before you can prioritize
them. However, before you can determine the assessment criteria, you must know
what the goal of the prioritization is. That goal is usually not your goal as a
Requirements Engineer but the goal of certain stakeholders, so you must decide who
the stakeholders are for this prioritization. And when you know their goal, it will
usually be clear that not all requirements will have to be prioritized but rather only a
defined subset.

Summarizing the above, we can outline a sequence of steps to be followed if we want
to prioritize requirements:

 Define major goals and constraints for the prioritization

Project and system context largely determine the reasons for prioritization. If,

for instance, you prioritize to decide which features will be implemented in

the next release, you might focus on business value; if the goal is to select user

stories for the next iteration, story points and technical dependencies would

be more prominent. Technical or legal constraints might limit the choices to

be made.

 Define desired assessment criteria

In principle, the goals and constraints dictate the criteria to be used.

Commonly used criteria are business value for stakeholders, urgency

perceived by users, effort to implement, risks for usage, logical and technical

dependencies, the legally binding nature of a requirement, or just the (inter-)

subjective preference of relevant stakeholders. Sometimes only a single

criterion is used but a balanced selection of several relevant criteria may yield

a better outcome.

Prioritization

Steps to be followed for

prioritizing requirements

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 125/139

 Define the stakeholders that have to be involved

Goals and constraints influence which stakeholders you should involve in the

prioritization but on the other hand, certain stakeholders themselves set

these goals, so you must be aware of the interdependency. As an example,

when prioritizing for the launch of a new system, you would probably invite

business representatives and a panel of future customers. When prioritizing

the product backlog to decide on the next iteration, the scrum team will be

involved.

 Define the requirements that have to be prioritized

It is unlikely that the whole set of requirements has to be prioritized. Once

again, this depends primarily on the goals and constraints for prioritizing. For

instance, constraints may dictate certain requirements to be must-haves. In

fact, it is only useful to prioritize requirements for which you have a choice

whether or not to include them in a next step of the development process. This

means that the project phase is also an important factor. In an early phase,

you might include draft versions in the prioritization; in a late phase, you will

often restrict prioritization to requirements that are in a stable version. Be

aware that requirements to be prioritized should be at a comparable level of

abstraction depending on the prioritization goals. In an early project phase,

for instance, you might prioritize themes or features while prioritizing user

stories at iteration planning.

 Select the prioritization technique

A prioritization technique is the way in which you prioritize the requirements.

As described below, there are several techniques, which differ in effort,

thoroughness, and level of detail. Here too, goals and constraints set the stage,

but the most important factor is that the stakeholders involved agree on the

technique that you intend to use. If not, they will not accept the outcome and

your prioritization effort is in vain.

 Perform prioritization

When all preparation has been done, you can perform the actual

prioritization. You assess all selected requirements on all defined criteria.

Together with the stakeholders involved, you apply the selected technique to

the criteria assessed. As a result, you get a prioritized list of requirements.

However, there might be a problem. Different stakeholders might have

different priorities, even if they agree on the criteria assessed. In that case,

you typically have a requirements conflict that should be resolved just like any

other conflict as described in Section 4.3 on conflict resolution.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 126/139

Taking a closer look at prioritization techniques, we distinguish between two
categories:

 Ad hoc techniques

With ad hoc techniques, experts assign priorities to the selected requirements

based on their own experience. In principle, this prioritization is based on a

single criterion, being the subjective perception of the expert. If this expertise

is at a high level and acceptable to the stakeholders, such a technique can be a

quick, cheap, and easy way to achieve prioritization. A variant would be to

invite several experts and calculate some kind of average priorities. Common

ad hoc techniques include Top-10 ranking and MoSCoW (Must have, Should

have, Could have, Won’t have this time) prioritization. Kano analysis (Section

4.2.1) is also useful: the dissatisfiers are must-haves, the satisfiers should-

haves, and the delighters can be could- or won’t-haves. For more background,

see, for example, [McIn2016].

 Analytical techniques

Analytical techniques employ a systematic process for assigning priorities. In

such techniques, experts assign weights to multiple assessment criteria (such

as benefit, cost, risk, time to implement, etc.) and subsequently, requirements

priorities are calculated as weighted outcomes based on these criteria. Such

techniques take more effort and time but have the advantage of giving a clear

insight into the factors that determine the priorities and into the process by

which the priorities are established. This can stimulate the acceptance of the

outcome among the stakeholders. However, two aspects must be kept in mind.

First, the outcome is heavily influenced by the weight factors that are used in

the calculation of the result. Therefore, an agreement among the stakeholders

about these weight factors must be established before the actual

prioritization. Otherwise, some might try to change the weight factors in order

to manipulate the priorities. The second aspect to consider is that the criteria

assessed are mostly estimates, not measured facts. And the estimates are

often on a simple ordinal scale such as low, medium, high. Thus, the quality of

the estimates is decisive for the quality of the resulting prioritization.

Nevertheless, analytical techniques are useful for providing a clearly

underpinned prioritization that is understood and thus accepted by the

stakeholders involved. For a detailed explanation of analytical techniques, see

[Olso2014].

It may be tempting to apply detailed, thorough techniques and spend a lot of time
producing perfectly accurate estimates in terms of money, hours, expected sales
numbers, etc. This could result in requirement A having a calculated priority of 22.76,
requirement B of 23.12, and requirement C of 20.29. You would then conclude that
evidently, C must be done first and A prior to B. However, you have probably just
introduced a pseudo-accuracy with this calculation, and it would be better to
conclude that those three requirements are equally important, which might have
been your gut feeling right from the start. Always make sure that the effort you spend
in prioritizing is justified by the value of a correct prioritization itself. So once again,
keep the goals in mind and remember Principle 1: value orientation.

Categories of

prioritization techniques

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 127/139

6.9 Further Reading

The textbooks by Pohl [Pohl2010], Davis [Davi2005], Hull, Jackson and Dick
[HuJD2011], van Lamsweerde [vLam2009] and Wiegers and Beatty [WiBe2013]
provide a comprehensive overview of requirements management. Additional insights
to the topic of requirements management is consolidated in the CPRE Advanced Level
handbook for Requirements Management by Bühne and Herrmann [BuHe2019].

Cleland-Huang, Gotel and Zisman [ClGZ2012] provide an in-depth treatment of
traceability.

Olson [Olso2014] and Wiegers [Wieg1999] deal with prioritization techniques.

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 128/139

7. Tool Support

A Requirements Engineer needs tools to practice his craftsmanship properly—just as
a carpenter needs his tools, pencil, a hammer, saw, and drill to design and realize a
piece of furniture. Without tools, it is difficult or impossible to record the
requirements, work together on the requirements, and be in control of the
requirements.

This chapter examines the different types of Requirements Engineering (RE) tools
available and the aspects that need to be taken into account to introduce
Requirements Engineering tools into an organization.

7.1 Tools in Requirements Engineering

Requirements Engineering is a difficult task without the support of tools. Tools are
needed to support Requirements Engineering tasks and activities. Existing tools focus
on supporting specific tasks, such as documenting requirements or supporting the RE
process, and rarely on all tasks and activities in the Requirements Engineering
process. It is therefore not surprising that the Requirements Engineer must have a set
of tools at his disposal to support the various components in the Requirements
Engineering process—just as the carpenter needs several tools (e.g., computer-aided
design (CAD)) to design a piece of furniture and needs tools like a saw, scraper, and
sandpaper to realize it.

Tools are just an aid to the Requirements Engineering process and the Requirements
Engineer, and such tools are called CASE (computer-aided software engineering)
tools. CASE tools support a specific task in the software production process
[Fugg1993].

We differentiate between different types of tools that support the following aspects
of Requirements Engineering:

 Management of requirements

Tools in this category have the properties needed to support the activities
and topics described in Chapter 6. With these kinds of tools, more control
can be established over the Requirements Engineering process.
Requirements are subject to change and in an environment where this
happens frequently, a tool with the relevant properties is indispensable.
Tools in this category support:
o Definition and storage of requirements attributes to identify and collect

data about work products and requirements as described in Section 6.5

o Facilitation and documentation of the prioritization of requirements
(Section 6.8)

o Life cycle management, version control, configurations and baselines as
described in Sections 6.2, 6.3, and 6.4

o Tracking and tracing of requirements, as well as defects in the
requirements and work products (Section 6.6)

o Change management for requirements; as we learned in Section 6.7,
changes are inevitable and have to be carefully managed

Necessary support for

Requirements

Engineering process

Different types of tools

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 129/139

 Requirements Engineering process

To support the Requirements Engineering process, information is needed to
allow the process to be adjusted or improved. This kind of tool can:
o Measure and report on the Requirements Engineering process and

workflow

o This information helps to improve the Requirements Engineering process
and reduces waste.

o Measure and report on the product quality

o This information helps to find defects and flaws, which in turn can be
used to improve product quality.

 Documentation of knowledge about the requirements

The amount of knowledge (and requirements) built up in a project can be
enormous. In addition, a large amount of knowledge is built up about a
product during its life cycle. All the relevant information must be carefully
documented to enable the following:
o Sharing and creation of a common understanding of the requirements

o Securing the requirements as a legal obligation

o An overview of and insight into the requirements

 Modeling of requirements

As we learned in Section 3.4.1.6, expressing requirements in both diagrams
and natural language uses the strengths of both forms of notation. A tool that
can model requirements allows you to:
o Structure your own thoughts; it can be used as an aid to thinking

o Specify the requirements in a more formal language than textual
requirements, with all benefits that brings

 Collaboration in Requirements Engineering

When several people and disciplines work on the same project, a tool can
support and enable this collaboration, especially in the world in which we
now live, where more and more activities are performed locally (at home).
This kind of tool supports the elicitation, documentation, and management
of requirements.

 Testing and/or simulation of the requirements

Tools are becoming more and more sophisticated. More and more options
are being developed for testing and/or simulating requirements in advance.
This allows a better prediction of whether the proposed requirements will
have the intended effect.

The tools available are often a mix of the above. As mentioned before, different tools
may need to be combined to adequately support Requirements Engineering. If
different tools are used, it is important to pay attention to the integration between
them and the interaction with other applications and systems in order to ensure
smooth operation.

Sometimes, other kinds of tools (for example, office or issue-tracking tools) are used,
or rather, misused, to document or manage requirements. However, these tools have
their limitations and should be used only when the Requirements Engineers and
stakeholders are in control of the RE process and requirements are aligned.
Otherwise, this is a major risk in the RE process, as such tools do not support any
requirements management activities.

Misuse of tools can

jeopardize the RE

process

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 130/139

7.2 Introducing Tools

Selecting an RE tool is no different to selecting a tool for any other purpose. You
should describe the objectives, context, and requirements before selecting and
implementing the appropriate tool(s).

Tools are just an aid to the Requirements Engineering process and the Requirements
Engineer. They do not solve organizational or human issues. Imagine that, together
with your colleagues, you want to document the requirements in a uniform manner.
Tools can support this—for instance, with a template in a word processing tool or
wiki page. This does not ensure that all your colleagues adopt this working method,
neither does it ensure that your colleagues have the discipline to record and manage
their requirements in this way. What can help is to make agreements with each other,
to check whether the agreements are being fulfilled, and to be able to communicate
with each other if agreements are not adhered to. A tool is not going to help you with
this. Introducing a Requirements Engineering tool requires clear Requirements
Engineering responsibilities and procedures.

A tool can help you to configure your Requirements Engineering process effectively
and efficiently. Tools often provide a framework based on best practices experience.
These frameworks can then be tailor-made to suit the situation.

As we have learned in the previous chapters, core Requirements Engineering
activities are not stand-alone processes. Selecting the appropriate RE tools starts with
the definition of the objectives and/or problems you want to solve in the RE process.
The next step is to determine the context of the system (in this case, the tool set).
Consider the aspects of the context—i.e., stakeholders, processes, events, etc., and
apply your Requirements Engineering skills to specify the requirements for the RE
tools. Practice what you preach.

The next sections describe some of the aspects that have to be taken into account
when introducing a (new) Requirements Engineering tool into your organization.

7.2.1 Consider All Life Cycle Costs beyond License Costs

The most obvious costs, such as purchase costs or licensing costs, are usually factored
in. In addition, less visible costs must also be taken into account, such as the use of
resources in the implementation, operation, and maintenance of the tool.

7.2.2 Consider Necessary Resources

Specifying the requirements and supervising the selection process requires the
necessary resources, in addition to the costs mentioned in the previous section.
People necessary to guide the selection process, Requirements Engineers, hardware
resources, and other resources should not be overlooked. After the tool has been put
into use, resources may also be required for maintenance and user support.

7.2.3 Avoid Risks by Running Pilot Projects

The introduction of a new tool can threaten the control over the current requirements
base. A requirements chaos can arise because there is a transition from the old
working method and/or tools to the new working method and tools. Introduction of
a new tool during an existing project will irrevocably lead to a delay in the delivery of
the requirements and even the project.

Introducing tools

Life cycle costs

Necessary resources

Running pilot projects

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 131/139

The introduction of a new tool, possibly with a different working method, should be
tested on a small scale, where the risks and impact remain manageable. There are
several ways to do this:

 Apply the tool to a non-critical project/system

 Use the tool redundantly alongside an existing project

 Apply the tool to a fictional situation/project

 Import/copy the requirements of a project that has already been completed

When you have reached the point where the tool meets the set goals and
requirements, it can be rolled out more widely within the organization or other
projects.

7.2.4 Evaluate the Tool according to Defined Criteria

Selecting the appropriate tool can be a difficult task. Extensive verification of whether
the objectives and requirements are met is a standard approach in Requirements
Engineering. A systematic approach that assesses the tool from different perspectives
also contributes to making the right choice. The following perspectives can be
considered:

 Project perspective

This point of view highlights the project management aspects. Does the tool
support the project and the information required in the project?

 Process perspective

This perspective verifies the support of the Requirements Engineering
process. Does the tool sufficiently support the RE process? Can it be
sufficiently adapted to the existing RE process and working method?

 User perspective

This perspective verifies the degree of application by the users of the tool.
This is an important view because if users are not satisfied with the tool, the
risk of the tool not being accepted increases. Does the tool sufficiently
support the authorization of users and groups? Is it sufficiently user-friendly
and intuitive?

 Product perspective

The functionalities offered by the tool are verified from this angle. Are the
requirements sufficiently covered by the tool? Where is the data stored? Is
there a roadmap with the functional extensions for the tool? Is the tool still
supported by the supplier for the time being?

 Supplier perspective

With this perspective the focus lies on the service and reliability of the
supplier. Where is the supplier located? How is the support for this tool
arranged?

 Economic perspective

This perspective looks at the business case: does the tool deliver sufficient
benefits in relation to the costs? What are the (management) costs for the
purchase and maintenance? What does the tool provide for the RE process?
Is a (separate) maintenance contract required?

 Architecture perspective

This perspective assesses how the tool fits into the (IT) organization. Does
the technology applied suit the organization? Can the tool be sufficiently
linked with other systems? Does the tool fit into the IT landscape and does it
comply with the architectural constraints?

Assessing tools

systematically

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 132/139

7.2.5 Instruct Employees on the Use of the Tool

Once a tool has been selected, the users should become familiar with the
opportunities the tool can add to the Requirements Engineering process. The users—
i.e., the Requirements Engineers—should be trained in how to use the tool in the
existing Requirements Engineering process. If the users are not sufficiently trained,
this may mean that not all the benefits of the tool are used. In fact, it is possible that
the tool will be used incorrectly, with all the associated consequences.

The Requirements Engineering process can also be changed due to the tool selected.
Aspects in the Requirements Engineering process that were not possible before can
be made possible with a new tool: for example, adequate version management,
modeling of requirements, etc. This can mean that new procedures are agreed,
templates are adapted or applied, changes are made to the working method, and so
on. The involvement of the Requirements Engineer in this change contributes to the
success of the tool's acceptance.

7.3 Further Reading

The following literature can be consulted for an overview of available tools and tool
evaluations. Juan M. Carrillo de Gea et. al. provide a comprehensive overview of the
role of Requirements Engineering tools [dGeA2011]. The article by Barbara
Kitchenham, Stephen Linkman, David Law [KiLL1997] describes and validates a
method for systematic tool evaluation. If you are searching for an RE tool, a
comprehensive list of tools for Requirements Engineering is provided on the Volere
website [Vole2020] or at [BiHe2020].

Instruct employees on

the use of the tools

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 133/139

8. References

[Alex2005] Ian F. Alexander: A Taxonomy of Stakeholders – Human Roles in

System Development. International Journal of Technology and

Human Interaction 2005, 1(1), 23–59.

[AnPC1994] Annie I. Antón, W. Michael McCracken, Colin Potts: Goal

Decomposition and Scenario Analysis in Business Process

Reengineering. CAiSE (Conference on Advanced Information Systems

Engineering), 1994, 94–104.

[Armo2004] Philip G. Armour. The Laws of Software Process: A New Model for the

Production and Management of Software. Boca Raton, Fl.: CRC Press,

2004.

[Axelos2019] Axelos: ITIL Foundation: ITIL 4 Edition. Axelos Ltd., 2019.

[BaBo2014] Stéphane Badreau, Jean-Louis Boulanger: Ingénierie des Exigences.

Paris: Dunod, 2014 (in French).

[BeeA2001] Kent Beck et al.: Principles behind the Agile Manifesto.

http://agilemanifesto.org/principles.html, 2001. Last visited August

2020.

[BiHe2020] Andreas Birk, Gerald Heller: List of Requirements Management

Tools. https://makingofsoftware.com/resources/list-of-rm-tools/,

2020, Last visited November 2020.

[Boeh1981] Barry W. Boehm: Software Engineering Economics, Englewood Cliffs,

New Jersey: Prentice Hall, 1981.

[BoRJ2005] Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling

Language User Guide, 2nd edition. Reading, MA: Addison-Wesley,

2005.

[Bour2009] Lynda Bourne: Stakeholder Relationship Management - A Maturity

Model for Organisational Implementation. Farnham: Gower, 2009.

[BuHe2019] Stan Bühne, Andrea Herrmann: Handbook Requirements

Management according to the IREB Standard – Education and

Training for the IREB Certified Professional for Requirements

Engineering Qualification Advanced Level Requirements

Management. Karlsruhe: IREB.

https://www.ireb.org/downloads/#cpre-advanced-level-

requirements-management-handbook, 2019. Last visited November

2020.

[CaDJ2014] Dante Carrizo, Oscar Dieste, Natalia Juristo: Systematizing

Requirements Elicitation Technique Selection. Information and

Software Technology 2014, 56(6), 644–669.

[Chen1976] Peter P.-S. Chen: The Entity-Relationship Model: Toward a Unified

View of Data, ACM Transactions on Database Systems 1976, 1(1), 9–

36.

http://agilemanifesto.org/principles.html
https://makingofsoftware.com/resources/list-of-rm-tools/
https://www.ireb.org/downloads/#cpre-advanced-level-requirements-management-handbook
https://www.ireb.org/downloads/#cpre-advanced-level-requirements-management-handbook

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 134/139

[ClGZ2012] Jane Cleland-Huang, Olly Gotel, Andrea Zisman (eds.): Software and

Systems Traceability. London: Springer, 2012.

[Cock2001] Alistair Cockburn: Writing Effective Use Cases. Boston: Addison-

Wesley, 2001.

[Cohn2004] Mike Cohn: User Stories Applied: For Agile Software Development.

Boston: Addison-Wesley, 2004.

[Cohn2010] Mike Cohn: Succeeding with Agile: Software Development Using

Scrum. Upper Saddle River, NJ: Addison-Wesley, 2010.

[CoWe1998] Reidar Conradi, Bernhard Westfechtel: Version Models for Software

Configuration Management. ACM Computing Surveys 1998, 30(2),

232–282.

[DaTW2012] Marian Daun, Bastian Tenbergen, Thorsten Weyer: Requirements

Viewpoint. In: K. Pohl, H. Hönninger, R. Achatz, M. Broy: Model-Based

Engineering of Embedded Systems, Heidelberg: Springer, 2012.

[Davi1993] Alan M. Davis: Software Requirements – Objects, Functions, and

States. 2nd Edition, Englewood Cliffs, New Jersey: Prentice Hall,

1993.

[Davi1995] Alan M. Davis: 201 Principles of Software Development. New York:

McGraw-Hill, 1995.

[Davi2005] Alan M. Davis: Just Enough Requirements Management - Where

Software Development Meets Marketing. New York: Dorset House,

2005.

[DeBo2005] Edward De Bono: De Bono's Thinking Course (Revised Edition),

Barnes & Noble Books, 2005.

[DeCo2007] Design Council: 11 Lessons: A Study of the Design Process.

https://www.designcouncil.org.uk/resources/report/11-lessons-

managing-design-global-brands, 2007. Last visited March 2020.

[dGeA2011] Juan M. Carrillo de Gea, Joaquín Nicolás, José L. Fernandez-Alemán,

Ambrosio Toval, Christof Ebert, Aurora Vizcaíno: Requirements

Engineering Tools. IEEE Software 2011, 28(4), 86–91.

[DeMa1978] Tom DeMarco: Structured Analysis and System Specification. New

York: Yourdon Press, 1978.

[DIN66001] DIN 66001:1983-12: Information processing; graphical symbols and

their application. Deutsches Institut für Normung e.V., Berlin, 1983

(in German).

[Eber2014] Christof Ebert: Systematisches Requirements Engineering, 5. Auflage.

Heidelberg: dpunkt 2014 (in German).

[Fowl1996] Martin Fowler: Analysis Patterns: Reusable Object Models. Reading,

MA: Addison-Wesley, 1996.

[Fugg1993] Alfonso Fuggetta: A Classification of CASE Technology. IEEE

Computer 1993, 26(12), 25–38.

https://www.designcouncil.org.uk/resources/report/11-lessons-managing-design-global-brands
https://www.designcouncil.org.uk/resources/report/11-lessons-managing-design-global-brands

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 135/139

[GaWe1989] Donald C. Gause and Gerald M. Weinberg: Exploring Requirements:

Quality before Design. New York: Dorset House, 1989.

[GFPK2010] Tony Gorschek, Samuel Fricker, Kenneth Palm, and Steven A.

Kunsman: A Lightweight Innovation Process for Software-Intensive

Product Development. IEEE Software 2010, 27(1), 37–45.

[GGJZ2000] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, Pamela Zave: A

Reference Model for Requirements and Specifications. IEEE Software

2000, 17(3), 37–43.

[GHJV1994] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design

Pattern – Elements of Reusable Object-Oriented Software. Reading,

Mass.: Addison-Wesley, 1994.

[Gilb1988] Tom Gilb: Principles of Software Engineering Management. Reading,

Mass.: Addison Wesley, 1988.

[Glas1999] Friedrich Glasl: Confronting Conflict – A First-Aid Kit for Handling

Conflict. Stroud, Gloucestershire: Hawthorn Press, 1999.

[GlFr2015] Martin Glinz and Samuel A. Fricker: On Shared Understanding in

Software Engineering: An Essay. Computer Science – Research and

Development 2015, 30(3-4), 363–376.

[Glin2007] Martin Glinz: On Non-Functional Requirements. 15th IEEE

International Requirements Engineering Conference, Delhi, India,

2007, 21–26.

[Glin2008] Martin Glinz: A Risk-Based, Value-Oriented Approach to Quality

Requirements. IEEE Software 2008, 25(2), 34–41.

[Glin2016] Martin Glinz: How Much Requirements Engineering Do We Need?

Softwaretechnik-Trends 2016, 36(3), 19–21.

[Glin2019] Martin Glinz: Requirements Engineering I. Course Notes, University

of Zurich, 2019.

https://www.ifi.uzh.ch/en/rerg/courses/archives/hs19/re-

i.html#resources. Last visited October 2020.

[Glin2020] Martin Glinz: A Glossary of Requirements Engineering Terminology.

Version 2.0. https://www.ireb.org/downloads/#cpre-glossary, 2020.

Last visited October 2020.

[GlWi2007] Martin Glinz and Roel Wieringa: Stakeholders in Requirements

Engineering (Guest Editors’ Introduction). IEEE Software 2007,

24(2), 18–20.

[GoFi1994] Orlena Gotel, Anthony Finkelstein: An Analysis of the Requirements

Traceability Problem. 1st International Conference on Requirements

Engineering, Colorado Springs, 1994, 94–101.

[GoRu2003] Rolf Goetz, Chris Rupp: Psychotherapy for System Requirements. 2nd

IEEE International Conference on Cognitive Informatics (ICCI’03),

London, 2003, 75–80.

https://www.ifi.uzh.ch/en/rerg/courses/archives/hs19/re-i.html#resources
https://www.ifi.uzh.ch/en/rerg/courses/archives/hs19/re-i.html#resources
https://www.ireb.org/downloads/#cpre-glossary

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 136/139

[Gott2002] Ellen Gottesdiener: Requirements by Collaboration: Workshops for

Defining Needs, Boston: Addison-Wesley Professional, 2002.

[GreA2017] Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg

Doerr, Emitzá Guzmán, Mahmood Hosseini, Jordi Marco, Marc Oriol,

Anna Perini, Melanie Stade: The Crowd in Requirements Engineering

- The Landscape and Challenges. IEEE Software 2017, 34(2), 44–52.

[Greg2016] Sarah Gregory: “It Depends”: Heuristics for “Common Enough”

Requirements. Keynote speech at REFSQ 2016, Essen, Germany,

2016,

https://refsq.org/fileadmin/sse/external/refsq/refsq2016/user_upl

oad/gregory_keynote.pdf. Last visited May 2020.

[GRL2020] Goal oriented Requirement Language. University of Toronto, Canada

https://www.cs.toronto.edu/km/GRL. Last visited May 2020.

[GrSe2005] Paul Grünbacher, Norbert Seyff: Requirements Negotiation. In A.

Aurum, C. Wohlin (eds.): Engineering and Managing Software

Requirements. Berlin: Springer, 2005, 143-162.

[Hare1988] David Harel. On Visual Formalisms. Communications of the ACM

1988, 31(5), 514–530.

[HoSch2020] Stefan Hofer, Henning Schwentner: Domain Storytelling — A

Collaborative Modeling Method. Available from Leanpub,

http://leanpub.com/domainstorytelling. Last visited March 2020.

[HuJD2011] Elizabeth Hull, Ken Jackson, Jeremy Dick: Requirements Engineering.

3rd ed., Berlin: Springer: 2011.

[Hump2017] Aaron Humphrey: User Personas and Social Media Profiles. Persona

Studies 2017, 3(2), 13–20.

[IEEE830] IEEE Recommended Practice for Software Requirements

Specifications. IEEE Std 830-1998, 1998.

[ISO19650] ISO 19650. Organization and Digitization of Information about

Buildings and Civil Engineering Works, including Building

Information Modelling (BIM)– Information Management Using

Building Information Modelling – Part 1 and 2, 2018.

[ISO5807] ISO/IEC/IEEE 1985-02: Information processing; Documentation

symbols and conventions for data, program and system flowcharts,

program network charts and system resources charts. International

Organization for Standardization, Geneva, 1985.

[ISO25010] ISO/IEC/IEEE 25010:2011: Systems and software Quality

Requirements and Evaluation (SQuaRE) – System and software

quality models. International Organization for Standardization,

Geneva, 2011.

[ISO29148] ISO/IEC/IEEE 29148: Systems and Software Engineering – Life Cycle

Processes – Requirements Engineering. International Organization

for Standardization, Geneva, 2018.

https://refsq.org/fileadmin/sse/external/refsq/refsq2016/user_upload/gregory_keynote.pdf
https://refsq.org/fileadmin/sse/external/refsq/refsq2016/user_upload/gregory_keynote.pdf
https://www.cs.toronto.edu/km/GRL
http://leanpub.com/domainstorytelling

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 137/139

[Jack1995] Michael Jackson: Software Requirements and Specifications: A

Lexicon of Practice, Principles and Prejudices. New York: ACM Press,

1995.

[Jack1995b] Michael Jackson: The World and the Machine. 17th International

Conference on Software Engineering 1995 (ICSE 1995), 287–292.

[Jaco1992] Ivar Jacobson: Object-oriented software engineering: a use case

driven approach. New York: ACM Press, 1992.

[JaSB2011] Ivar Jacobson, Ian Spence, Kurt Bittner: Use Case 2.0: The Guide to

Succeeding with Use Cases. Ivar Jacobson International SA, 2011.

[KiLL1997] Barbara Kitchenham, Stephen Linkman, David Law: DESMET: A

Methodology for Evaluating Software Engineering Methods and

Tools. Computing & Control Engineering Journal 1997, 8(3), 120–

126.

[KSTT1984] Noriaki Kano, Nobuhiku Seraku, Fumio Takahashi, Shinichi Tsuji:

Attractive Quality and Must-Be Quality. Hinshitsu (Quality – Journal

of the Japanese Society for Quality Control) 1984, 14(2), 39-48 (in

Japanese).

[Laue2002] Søren Lauesen: Software Requirements: Styles and Techniques.

London: Addison-Wesley, 2002.

[LaWE2001] Brian Lawrence, Karl Wiegers, and Christof Ebert: The Top Risks of

Requirements Engineering. IEEE Software 2001, 18(6), 62–63.

[LiOg2011] Jeanne Liedtka, Tim Ogilvie: Designing for Growth: A Design Thinking

Tool Kit for Managers. New York: Columbia University Press, 2011.

[LiSS1994] Odd I. Lindland, Guttorm Sindre, Arne Sølverg: Understanding

Quality in Conceptual Modeling. IEEE Software 1994, 11(2), 42–49.

[LiSZ1994] Horst Lichter, Matthias Schneider-Hufschmidt, Heinz Züllighoven:

Prototyping in Industrial Software Projects – Bridging the Gap

Between Theory and Practice. IEEE Transactions on Software

Engineering 1994, 20(11), 825–832.

[LiQF2010] Soo Ling Lim, Daniele Quercia, Anthony Finkelstein: StakeNet: Using

Social Networks to Analyse the Stakeholders of Large-Scale Software

Projects. 32nd International Conference on Software Engineering

(ICSE 2010), 2010, 295–304.

[MaGR2004] Neil Maiden, Alexis Gizikis, Suzanne Robertson: Provoking Creativity:

Imagine What Your Requirements Could Be Like. IEEE Software

2004, 21(5), 68–75.

[Math2019] Joseph Mathenge: Change Control Board vs Change Advisory Board:

What’s the Difference? https://www.bmc.com/blogs/change-

control-board-vs-change-advisory-board, Nov. 22, 2019. Last visited

August 2020.

https://www.bmc.com/blogs/change-control-board-vs-change-advisory-board
https://www.bmc.com/blogs/change-control-board-vs-change-advisory-board

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 138/139

[McIn2016] John McIntyre: MoSCoW or Kano Models – How Do You Prioritize?

https://www.hotpmo.com/management-models/moscow-kano-

prioritize, Oct. 20, 2016. Last visited August 2020.

[MNJR2016] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe:

Toward Data-Driven Requirements Engineering. IEEE Software

2016, 33(1), 48–54.

[Moor2014] Christopher W. Moore: The Mediation Process – Practical Strategies

for Resolving Conflicts, 4th edition. Hoboken, NJ: John Wiley & Sons,

2014.

[MWHN2009] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak:

Easy Approach to Requirements Syntax (EARS). 17th IEEE

International Requirements Engineering Conference (RE'09), Atlanta,

Georgia, 2009, 317–322.

[NuKF2003] Bashar Nuseibeh, Jeff Kramer, Anthony Finkelstein: ViewPoints:

Meaningful Relationships are Difficult! 25th International Conference

on Software Engineering (ICSE'03), Portland, Oregon, 2003, 676–

681.

[OleA2018] K. Olsen et al.: Certified Tester, Foundation Level Syllabus - Version

2018. International Software Testing Qualifications Board, 2018.

[Olso2014] David Olson: Matrix Prioritization.

http://www.bawiki.com/wiki/Matrix-Prioritization.html, 2014. Last

visited August 2020.

[OMG2013] Object Management Group: Business Process Model and Notation

(BPMN), version 2.0.2. OMG document, formal/2013-12-09.

https://www.omg.org/spec/BPMN/. Last visited February 2020.

[OMG2017] Object Management Group: OMG Unified Modeling Language (OMG

UML), version 2.5.1. OMG document, formal/2017-12-05.

https://www.omg.org/spec/UML/About-UML/. Last visited

February 2020.

[OMG2018] Object Management Group: OMG Systems Modeling Language (OMG

SysML™), version 1.6. OMG document, ptc/2018-12-08.

https://www.omg.org/spec/SysML/About-SysML/ Last visited

October 2020.

[Osbo1948] Alex F. Osborn: Your Creative Power: How to Use Imagination. C.

Scribner's Sons, 1948. (Accessed as digital reprint: Read Books Ltd.

(epub eBook), April 2013).

[Pich2010] Roman Pichler: Agile Product Management with Scrum – Creating

Products that Customers Love, Boston: Addison-Wesley, 2010.

[Pohl2010] Klaus Pohl: Requirements Engineering: Fundamentals, Principles,

and Techniques. Berlin-Heidelberg: Springer, 2010.

[PoRu2015] Klaus Pohl, Chris Rupp: Requirements Engineering Fundamentals: A

Study Guide for the Certified Professional for Requirements

Engineering Exam, (2nd ed). Rocky Nook, Santa Barbara, 2015.

https://www.hotpmo.com/management-models/moscow-kano-prioritize
https://www.hotpmo.com/management-models/moscow-kano-prioritize
http://www.bawiki.com/wiki/Matrix-Prioritization.html
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/SysML/About-SysML/

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 139/139

[Rein1997] Donald G. Reinertsen: Managing the Design Factory – A Product

Developer’s Toolkit. The Free Press, 1997.

[Rein2009] Donald G. Reinertsen: The Principles of Product Development Flow:

Second Generation Lean Product Development. Redondo Beach, Ca.:

Celeritas Publishing, 2009.

[Ries2011] Eric Ries: The Lean Startup: How Today's Entrepreneurs Use

Continuous Innovation to Create Radically Successful Businesses.

New York: Crown Business, 2011.

[Robe2001] S. Ian Robertson: Problem Solving. Hove, East Sussex: Psychology

Press, 2001.

[RoRo2012] Suzanne Robertson and James Robertson: Mastering the

Requirements Process: Getting Requirements Right. 3rd edition.

Boston: Addison-Wesley, 2012.

[RuJB2004] James Rumbaugh, Ivar Jacobson, Grady Booch: The Unified Modeling

Language Reference Manual, 2nd edition. Reading, MA: Addison

Wesley, 2004.

[Rupp2014] Chris Rupp: Requirements-Engineering und Management, 6. Auflage.

München: Hanser, 2014 (in German).

[SoSa1998] Ian Sommerville and Pete Sawyer: Requirements Engineering: A

Good Practice Guide. Chichester: John Wiley & Sons, 1997.

[SwBa1982] William Swartout and Robert Balzer: On the Inevitable Intertwining

of Specification and Implementation. Communications of the ACM

1982, 25(7), 438–440.

[Verd2014] Dave Verduyn: Discovering the Kano Model, in: Kano model,

https://www.kanomodel.com/discovering-the-kano-model, 2014.

Last visited March 2020.

[vLam2009] Axel van Lamsweerde: Requirements Engineering: From System

Goals to UML Models to Software Specifications. Chichester: John

Wiley & Sons, 2009.

[Vole2020] Volere Requirements Resources: https://www.volere.org. Last

visited June 2020.

[WiBe2013] Karl Wiegers and Joy Beatty: Software Requirements. 3rd edition.

Redmond, Wa.: Microsoft Press, 2013.

[Wieg1999] Karl E. Wiegers: First Things First: Prioritizing Requirements.

https://www.processimpact.com/articles/prioritizing.pdf, 1999.

Last visited August 2020.

[ZoCo2005] Didar Zowghi, Chad Coulin: Requirements Elicitation: A Survey of

Techniques, Approaches, and Tools. In A. Aurum, C. Wohlin (eds.)

Engineering and Managing Software Requirements. Berlin: Springer,

2005, 19–46.

https://www.kanomodel.com/discovering-the-kano-model
https://www.volere.org/
https://www.processimpact.com/articles/prioritizing.pdf

	Terms of Use
	Acknowledgements
	Table of Contents
	Foreword
	Version History
	1. Introduction and Overview
	1.1 Requirements Engineering: What
	1.2 Requirements Engineering: Why
	1.3 Requirements Engineering: Where
	1.4 Requirements Engineering: How
	1.5 The Role and Tasks of a Requirements Engineer
	1.6 What to Learn about Requirements Engineering
	1.7 Further Reading

	2. Fundamental Principles of Requirements Engineering
	2.1 Overview of Principles
	2.2 The Principles Explained
	Principle 1 – Value orientation: Requirements are a means to an end, not an end in itself
	Principle 2 – Stakeholders: RE is about satisfying the stakeholders’ desires and needs
	Principle 3 – Shared understanding: Successful systems development is impossible without a common basis
	Principle 4 – Context: Systems cannot be understood in isolation
	Principle 5 – Problem, requirement, solution: An inevitably intertwined triple
	Principle 6 – Validation: Non-validated requirements are useless
	Principle 7 – Evolution: Changing requirements are no accident, but the normal case
	Principle 8 – Innovation: More of the same is not enough
	Principle 9 – Systematic and disciplined work: We can’t do without in RE

	2.3 Further Reading

	3. Work Products and Documentation Practices
	3.1 Work Products in Requirements Engineering
	3.1.1 Characteristics of Work Products
	3.1.2 Abstraction Levels
	3.1.3 Level of Detail
	3.1.4 Aspects to be Considered
	3.1.5 General Documentation Guidelines
	3.1.6 Work Product Planning

	3.2 Natural-Language-Based Work Products
	3.3 Template-Based Work Products
	3.3.1 Phrase Templates
	3.3.1.1 Phrase Templates for Individual Requirements
	3.3.1.2 Phrase Templates for User Stories

	3.3.2 Form Templates
	3.3.3 Document Templates
	3.3.4 Advantages and Disadvantages

	3.4 Model-Based Work Products
	3.4.1 The Role of Models in Requirements Engineering
	3.4.1.1 Syntax and Semantics
	3.4.1.2 Properties of a Model
	3.4.1.3 Advantages and Disadvantages of Modeling Requirements
	3.4.1.4 Application of Requirements Models
	3.4.1.5 Quality Aspects of a Requirements Model
	3.4.1.6 Best of Both Worlds

	3.4.2 Modeling System Context
	3.4.2.1 Modeling the System Context with a Data Flow Diagram (DFD)
	3.4.2.2 Modeling the System Context with a UML Use Case Diagram

	3.4.3 Modeling Structure and Data
	3.4.3.1 Modeling Structure and Data with UML Class Diagrams

	3.4.4 Modeling Function and Flow
	3.4.4.1 UML Activity Diagram

	3.4.5 Modeling State and Behavior
	3.4.5.1 UML Sequence Diagram

	3.4.6 Modeling Goals

	3.5 Glossaries
	3.6 Requirements Documentation Structures
	3.7 Prototypes in Requirements Engineering
	3.8 Quality Criteria for Work Products and Requirements
	3.9 Further Reading

	4. Practices for Requirements Elaboration
	4.1 Sources for Requirements
	4.1.1 Stakeholders
	4.1.1.1 A Special Stakeholder: The User
	4.1.1.2 Personas

	4.1.2 Documents
	4.1.3 Other Systems

	4.2 Elicitation of Requirements
	4.2.1 The Kano Model
	4.2.2 Gathering Techniques
	4.2.3 Design and Idea-Generating Techniques

	4.3 Resolving Conflicts regarding Requirements
	4.3.1 How Do You Resolve a Requirements Conflict?
	4.3.2 Conflict Types
	4.3.3 Conflict Resolution Techniques

	4.4 Validation of Requirements
	4.4.1 Important Aspects for Validation
	4.4.2 Validation Techniques

	4.5 Further Reading

	5. Process and Working Structure
	5.1 Influencing Factors
	5.2 Requirements Engineering Process Facets
	5.2.1 Time Facet: Linear versus Iterative
	5.2.2 Purpose Facet: Prescriptive versus Explorative
	5.2.3 Target Facet: Customer-Specific versus Market-Oriented
	5.2.4 Hints and Caveats
	5.2.5 Further Considerations

	5.3 Configuring a Requirements Engineering Process
	5.3.1 Typical Combinations of Facets
	Participatory RE Process: Iterative & Explorative & Customer-Specific
	Contractual RE Process: Typically Linear & Prescriptive & Customer-Specific
	Product-Oriented RE Process: Iterative & Explorative & Market-Oriented

	5.3.2 Other RE Processes
	5.3.3 How to Configure RE Processes

	5.4 Further Reading

	6. Management Practices for Requirements
	6.1 What is Requirements Management?
	6.2 Life Cycle Management
	6.3 Version Control
	6.4 Configurations and Baselines
	6.5 Attributes and Views
	6.6 Traceability
	6.7 Handling Change
	6.8 Prioritization
	6.9 Further Reading

	7. Tool Support
	7.1 Tools in Requirements Engineering
	7.2 Introducing Tools
	7.2.1 Consider All Life Cycle Costs beyond License Costs
	7.2.2 Consider Necessary Resources
	7.2.3 Avoid Risks by Running Pilot Projects
	7.2.4 Evaluate the Tool according to Defined Criteria
	7.2.5 Instruct Employees on the Use of the Tool

	7.3 Further Reading

	8. References

